OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24330–24341

Time-variant 1D photonic crystals using flowing microdroplets

Zefeng Chen, Zehui Yong, Chi Wah Leung, Xuming Zhang, Yihang Chen, Helen L. W. Chan, and Yu Wang  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24330-24341 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2004 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we propose a time-variant photonic crystal, which can be formed by a stream of wave-length-scale microdroplets flowing through a microfluidic channel. The functionality stems from the photonic bandgap generated from the 1D periodic perturbation of refractive index. The periodicity, volume fraction and composition of both the dispersed and the continuous phases can be conveniently tuned in real time by hydrodynamic or pneumatic methods. By simulation, it is found that the time-variant nature of the proposed structure can induce an abnormal energy evolution, which is distinct from any existing photonic crystal structures. As a basic component for optofluidic systems, the droplet-based photonic crystal may find potential applications in light modulation and light confinement, and could be an ideal model for pursuing physical insights into time-variant optofluidic systems.

© 2012 OSA

OCIS Codes
(230.4110) Optical devices : Modulators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: July 16, 2012
Revised Manuscript: September 17, 2012
Manuscript Accepted: October 3, 2012
Published: October 9, 2012

Zefeng Chen, Zehui Yong, Chi Wah Leung, Xuming Zhang, Yihang Chen, Helen L. W. Chan, and Yu Wang, "Time-variant 1D photonic crystals using flowing microdroplets," Opt. Express 20, 24330-24341 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006). [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007). [CrossRef]
  3. H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5(10), 598–604 (2011). [CrossRef]
  4. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005). [CrossRef] [PubMed]
  5. S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater.4(7), 530–533 (2005). [CrossRef] [PubMed]
  6. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express15(15), 9139–9146 (2007). [CrossRef] [PubMed]
  7. B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express15(22), 14322–14334 (2007). [CrossRef] [PubMed]
  8. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009). [CrossRef] [PubMed]
  9. D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A.101(34), 12434–12438 (2004). [CrossRef] [PubMed]
  10. A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express16(18), 13499–13508 (2008). [CrossRef] [PubMed]
  11. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett.29(14), 1626–1628 (2004). [CrossRef] [PubMed]
  12. S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip11(11), 1864–1869 (2011). [CrossRef] [PubMed]
  13. Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express14(22), 10494–10499 (2006). [CrossRef] [PubMed]
  14. S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett.90(22), 221101 (2007). [CrossRef]
  15. M. Mancuso, J. M. Goddard, and D. Erickson, “Nanoporous polymer ring resonators for biosensing,” Opt. Express20(1), 245–255 (2012). [CrossRef] [PubMed]
  16. X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip9(14), 2050–2058 (2009). [CrossRef] [PubMed]
  17. Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun3, 651 (2012). [CrossRef] [PubMed]
  18. S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip8(2), 198–220 (2008). [CrossRef] [PubMed]
  19. R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys.75(1), 016601 (2012). [CrossRef] [PubMed]
  20. A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl.49(34), 5846–5868 (2010). [PubMed]
  21. M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science315(5813), 832–835 (2007). [CrossRef] [PubMed]
  22. T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett.86(18), 4163–4166 (2001). [CrossRef] [PubMed]
  23. S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using flow focusing in microchannels,” Appl. Phys. Lett.82(3), 364–366 (2003). [CrossRef]
  24. Y.-C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip4(4), 292–298 (2004). [CrossRef] [PubMed]
  25. E. Um and J.-K. Park, “A microfluidic abacus channel for controlling the addition of droplets,” Lab Chip9(2), 207–212 (2009). [CrossRef] [PubMed]
  26. G. F. Christopher, J. Bergstein, N. B. End, M. Poon, C. Nguyen, and S. L. Anna, “Coalescence and splitting of confined droplets at microfluidic junctions,” Lab Chip9(8), 1102–1109 (2009). [CrossRef] [PubMed]
  27. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature442(7102), 551–554 (2006). [CrossRef] [PubMed]
  28. M. Hashimoto, B. Mayers, P. Garstecki, and G. M. Whitesides, “Flowing lattices of bubbles as tunable self-assembled diffraction gratings,” Small2(11), 1292–1298 (2006). [CrossRef] [PubMed]
  29. L. K. Chin, A. Q. Liu, J. B. Zhang, C. S. Lim, and Y. C. Soh, “An on-chip liquid tunable grating using multiphase droplet microfluidics,” Appl. Phys. Lett.93(16), 164107 (2008). [CrossRef]
  30. L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010). [CrossRef] [PubMed]
  31. S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009). [CrossRef] [PubMed]
  32. E. Castro-Hernández, W. van Hoeve, D. Lohse, and J. M. Gordillo, “Microbubble generation in a co-flow device operated in a new regime,” Lab Chip11(12), 2023–2029 (2011). [CrossRef] [PubMed]
  33. L. Shui, E. S. Kooij, D. Wijnperle, A. van der Berg, and J. C. T. Eijkel, “Liquid crystallography: 3D microdroplet arrangements using microfluidics,” Soft Matter5(14), 2708–2712 (2009). [CrossRef]
  34. L. Shui, A. van den Berg, and J. C. T. Eijkel, “Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics,” Microfluid. Nanofluid.11(1), 87–92 (2011). [CrossRef]
  35. S. Xiong, Y. Yang, K. Mawatari, T. Kitamori, and A. Q. Liu, “Nano-optofluidic droplet via photonic crystal characters for bio-imaging and detection applications,” in The 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp. 1077–1079 (2011).
  36. P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov.5(3), 210–218 (2006). [CrossRef] [PubMed]
  37. E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A.106(34), 14195–14200 (2009). [CrossRef] [PubMed]
  38. M. T. Guo, A. Rotem, J. A. Heyman, and D. A. Weitz, “Droplet microfluidics for high-throughput biological assays,” Lab Chip12(12), 2146–2155 (2012). [CrossRef] [PubMed]
  39. H. Kogelnik, “An introduction to integrated optics,” IEEE Trans. Microw. Theory Tech.23(1), 2–16 (1975). [CrossRef]
  40. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, 1995).
  41. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech: Norwood, MA, 2000).
  42. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  43. Carbon disulifide (CS2) sometimes can be used as infrared transparent solvent, whose transparent window mainly spans at wavelengths from 8 to16µm. We select it because of its high refractive index which is 1.628. The most popular infrared solvent is carbon tetrachloride (CCl4), which is transparent at all wavelength less than 12µm. Other infrared transparent solvents include tetrachloroethylene, chloroform, dimethylformamide, dioxane, cyclohexane and benzene.
  44. J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature390, 143–145 (1999).
  45. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003). [CrossRef] [PubMed]
  46. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005). [CrossRef] [PubMed]
  47. V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip7(10), 1352–1356 (2007). [CrossRef] [PubMed]
  48. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B54(1-2), 3–15 (1999). [CrossRef]
  49. S. Jakiela, S. Makulska, P. M. Korczyk, and P. Garstecki, “Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities,” Lab Chip11(21), 3603–3608 (2011). [CrossRef] [PubMed]
  50. J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011). [CrossRef]
  51. J. Lee, H. Park, J. Jung, and H. Kwak, “Bubble nucleation micro line heaters,” J. Heat Transfer125(4), 687–692 (2003). [CrossRef]
  52. K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip11(7), 1389–1395 (2011). [CrossRef] [PubMed]
  53. According to ideal gas law, a heat source at a fixed location will enlarge the volume of microbubbles as they flow through.
  54. J.-M. Lim, J. P. Urbanski, T. Thorsen, and S.-M. Yang, “Pneumatic control of a liquid-core/liquid-cladding waveguide as the basis for an optofluidic switch,” Appl. Phys. Lett.98(4), 044101 (2011). [CrossRef]
  55. W. Song and D. Psaltis, “Pneumatically tunable optofluidic 2×2 switch for reconfigurable optical circuit,” Lab Chip11(14), 2397–2402 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited