OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24342–24347

Incorporating conductive materials into a photonic crystal fiber: toward optoelectronic applications

Haifeng Li, Ding Ma, Chuan Yang, Yong Xu, and Zhiwen Liu  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24342-24347 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1011 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a method to selectively fill arbitrary air holes of microstructured photonic crystal fibers with conductive materials through microsphere-assisted fabrication. A photonic crystal fiber with three of its air holes filled with gallium is fabricated and optically characterized. Further it is shown that nanomaterials such as carbon nanotube can be attached to the tip of the conductive channel through additional optical soldering post-processing.

© 2012 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 22, 2012
Revised Manuscript: July 13, 2012
Manuscript Accepted: August 20, 2012
Published: October 9, 2012

Haifeng Li, Ding Ma, Chuan Yang, Yong Xu, and Zhiwen Liu, "Incorporating conductive materials into a photonic crystal fiber: toward optoelectronic applications," Opt. Express 20, 24342-24347 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Knight, “Photonic crystal fibres,” Nature424(6950), 847–851 (2003). [CrossRef] [PubMed]
  2. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002). [CrossRef] [PubMed]
  3. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002), 466–468.
  4. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett.29(17), 1974–1976 (2004). [CrossRef] [PubMed]
  5. F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett.85(12), 2181–2183 (2004). [CrossRef]
  6. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt.7(8), L13–L20 (2005). [CrossRef]
  7. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science311(5767), 1583–1586 (2006). [CrossRef] [PubMed]
  8. Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett.90(19), 193504 (2007). [CrossRef]
  9. A. Bozolan, C. J. de Matos, C. M. B. Cordeiro, E. M. Dos Santos, and J. Travers, “Supercontinuum generation in a water-core photonic crystal fiber,” Opt. Express16(13), 9671–9676 (2008). [CrossRef] [PubMed]
  10. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett.85(22), 5182–5184 (2004). [CrossRef]
  11. L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express13(22), 9014–9022 (2005). [CrossRef] [PubMed]
  12. Y. Wang, S. Liu, X. Tan, and W. Jin, “Selective-fluid-filling technique of microstructured optical fibers,” J. Lightwave Technol.28(22), 3193–3196 (2010).
  13. J. Canning, M. Stevenson, T. K. Yip, S. K. Lim, and C. Martelli, “White light sources based on multiple precision selective micro-filling of structured optical waveguides,” Opt. Express16(20), 15700–15708 (2008). [CrossRef] [PubMed]
  14. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express18(24), 25232–25240 (2010). [CrossRef] [PubMed]
  15. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol.27(11), 1617–1630 (2009). [CrossRef]
  16. R. Spittel, D. Hoh, S. Brückner, A. Schwuchow, K. Schuster, J. Kobelke, and H. Bartelt, “Selective filling of metals into photonic crystal fibers,” Proc. SPIE7946, 79460Z, 79460Z-8 (2011). [CrossRef]
  17. J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express16(9), 5983–5990 (2008). [CrossRef] [PubMed]
  18. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express12(2), 299–309 (2004). [CrossRef] [PubMed]
  19. P. Kim and C. M. Lieber, “Nanotube nanotweezers,” Science286(5447), 2148–2150 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited