OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24348–24355

Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators

Yinghui Guo, Lianshan Yan, Wei Pan, Bin Luo, Kunhua Wen, Zhen Guo, and Xiangang Luo  »View Author Affiliations


Optics Express, Vol. 20, Issue 22, pp. 24348-24355 (2012)
http://dx.doi.org/10.1364/OE.20.024348


View Full Text Article

Enhanced HTML    Acrobat PDF (1510 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate a plasmonic waveguide system based on side-coupled complementary split-ring resonators (CSRR), which exhibits electromagnetically induced transparency (EIT)-like transmission. LC resonance model is utilized to explain the electromagnetic responses of CSRR, which is verified by simulation results of finite difference time domain method. The electromagnetic responses of CSRR can be flexible handled by changing the asymmetry degree of the structure and the width of the metallic baffles. Cascaded CSRRs also have been studied to obtain EIT-like transmission at visible and near-infrared region, simultaneously.

© 2012 OSA

OCIS Codes
(000.4930) General : Other topics of general interest
(240.6680) Optics at surfaces : Surface plasmons
(230.4555) Optical devices : Coupled resonators
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Metamaterials

History
Original Manuscript: May 23, 2012
Revised Manuscript: August 25, 2012
Manuscript Accepted: September 28, 2012
Published: October 9, 2012

Citation
Yinghui Guo, Lianshan Yan, Wei Pan, Bin Luo, Kunhua Wen, Zhen Guo, and Xiangang Luo, "Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators," Opt. Express 20, 24348-24355 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-22-24348


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007). [CrossRef]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996). [CrossRef] [PubMed]
  3. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1(4), 224–227 (2007). [CrossRef]
  4. B. Kanté, S. N. Burokur, A. Sellier, A. de Lustrac, and J. M. Lourtioz, “Controlling plasmon hybridization for negative refraction metamaterials,” Phys. Rev. B79(7), 075121 (2009). [CrossRef]
  5. A. Sellier, S. N. Burokur, B. Kanté, and A. de Lustrac, “Negative refractive index metamaterials using only metallic cut wires,” Opt. Express17(8), 6301–6310 (2009). [CrossRef] [PubMed]
  6. B. Kanté, A. de Lustrac, J. M. Lourtioz, and S. N. Burokur, “Infrared cloaking based on the electric response of split ring resonators,” Opt. Express16(12), 9191–9198 (2008). [CrossRef] [PubMed]
  7. K.-J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66(20), 2593–2596 (1991). [CrossRef] [PubMed]
  8. C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys.70(1), 37–41 (2002). [CrossRef]
  9. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008). [CrossRef] [PubMed]
  10. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A69(6), 063804 (2004). [CrossRef]
  11. A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A71(4), 043804 (2005). [CrossRef]
  12. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett.98(21), 213904 (2007). [CrossRef] [PubMed]
  13. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B80(3), 035104 (2009). [CrossRef]
  14. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express17(2), 1107–1115 (2009). [CrossRef] [PubMed]
  15. F. Martin, J. Bonache, F. Falcone, M. Sorolla, and R. Marques, “Split ring resonator-based left-handed coplanar waveguide,” Appl. Phys. Lett.83(22), 4652–4654 (2003). [CrossRef]
  16. P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009). [CrossRef] [PubMed]
  17. S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B80(15), 153103 (2009). [CrossRef]
  18. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express17(7), 5595–5605 (2009). [CrossRef] [PubMed]
  19. K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys.7(168), 1–15 (2005).
  20. K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express18(13), 13407–13417 (2010). [CrossRef] [PubMed]
  21. B. Lahiri, S. G. McMeekin, A. Z. Khokhar, R. M. De La Rue, and N. P. Johnson, “Magnetic response of split ring resonators (SRRs) at visible frequencies,” Opt. Express18(3), 3210–3218 (2010). [CrossRef] [PubMed]
  22. P. Gay-Balmaz and O. J. F. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys.92(5), 2929–2935 (2002). [CrossRef]
  23. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  24. B. Kanté, A. de Lustrac, and J. M. Lourtioz, “In-plane coupling and field enhancement in infrared metamaterial surfaces,” Phys. Rev. B80(3), 035108 (2009). [CrossRef]
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  26. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003). [CrossRef] [PubMed]
  27. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited