OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24650–24663

In situ dissolution or deposition of Ytterbium (Yb) metal in microhotplate wells for a miniaturized atomic clock

Ronald P. Manginell, Matthew W. Moorman, John M. Anderson, George R. Burns, Komandoor E. Achyuthan, David R. Wheeler, and Peter D. D. Schwindt  »View Author Affiliations


Optics Express, Vol. 20, Issue 22, pp. 24650-24663 (2012)
http://dx.doi.org/10.1364/OE.20.024650


View Full Text Article

Enhanced HTML    Acrobat PDF (1907 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Current atomic clocks are burdened by size, weight, power and portability limitations to satisfy a broad range of potential applications. One critical need in the fabrication of a miniaturized atomic clock is small, low-power metallic sources. Exploiting the relatively high vapor pressure of ytterbium (Yb) and its dissolution in anhydrous ammonia, we report two independent techniques for depositing Yb inside a well micromachined into a microhotplate. Subsequent in situ evaporation of Yb from the microhotplate well serves as a low-power metallic source suitable for atomic clocks. The deposition and evaporation of Yb were confirmed using a variety of physicochemical techniques including quartz crystal microbalance, scanning electron microscopy, energy dispersive X-ray spectroscopy, and laser fluorescence. We also describe the fabrication of the microhotplate device, an integral component of our Yb-based miniature atomic clock. The Yb deposition/evaporation on a microhotplate well is thus useful as a low power Yb source during the fabrication of a miniaturized atomic clock, and this technique could be used for other applications requiring a vapor of a metal that has a moderate vapor pressure.

© 2012 OSA

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.2930) Atomic and molecular physics : Hyperfine structure
(160.0160) Materials : Materials
(160.3900) Materials : Metals

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: June 18, 2012
Revised Manuscript: August 20, 2012
Manuscript Accepted: August 20, 2012
Published: October 12, 2012

Citation
Ronald P. Manginell, Matthew W. Moorman, John M. Anderson, George R. Burns, Komandoor E. Achyuthan, David R. Wheeler, and Peter D. D. Schwindt, "In situ dissolution or deposition of Ytterbium (Yb) metal in microhotplate wells for a miniaturized atomic clock," Opt. Express 20, 24650-24663 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-22-24650


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Knappe, “MEMS atomic clocks,” in Comprehensive Microsystems, Vol. 3 (Elsevier, 2007), 571-612.
  2. T. E. Parker, “Long-term comparison of caesium fountain primary frequency standards,” Metrologia47(1), 1–10 (2010). [CrossRef]
  3. N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 optical lattice clock,” Phys. Rev. Lett.103(6), 063001 (2009). [CrossRef] [PubMed]
  4. C. W. Chou, D. B. Hume, J. C. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010). [CrossRef] [PubMed]
  5. J. J. McFerran, L. Yi, S. Mejri, S. Di Manno, W. Zhang, J. Guéna, Y. Le Coq, and S. Bize, “Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty=5.7 x 10−15,”Phys. Rev. Lett.108(18), 183004 (2012). [CrossRef] [PubMed]
  6. N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+.,” Phys. Rev. Lett.108(9), 090801 (2012). [CrossRef] [PubMed]
  7. Ch. Lisdat, J. S. Winfred, T. Middelmann, F. Riehle, and U. Sterr, “Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons,” Phys. Rev. Lett.103(9), 090801 (2009). [CrossRef] [PubMed]
  8. M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008). [CrossRef] [PubMed]
  9. X. Baillard, M. Fouche, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, “An optical lattice clock with spin-polarized 87Sr atoms,” Eur. Phys. J. D48(1), 11–17 (2008). [CrossRef]
  10. M. A. Perez, U. Nguyen, S. Knappe, E. A. Donley, J. Kitching, and A. M. Shkel, “Rubidium vapor cell with integrated Bragg reflectors for compact atomic MEMS,” Sens. Actuators A Phys.154(2), 295–303 (2009). [CrossRef]
  11. S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt.8(7), S318–S322 (2006). [CrossRef]
  12. R. Lutwak, P. Vlitas, M. Varghese, M. Mescher, D. K. Serkland, and G. M. Peake, “The MAC – A miniature atomic clock,” in Proceedings of 36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, L. Breakiron, ed., 752–757 (2005).
  13. S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett.85(9), 1460–1462 (2004). [CrossRef]
  14. A. M. Braun, T. J. Davis, M. H. Kwakernaak, J. J. Michalchuk, A. Ulmer, W. K. Chan, J. H. Abeles, Z. A. Shellenbarger, Y. Y. Jau, W. Happer, T. McClelland, H. Fruehauf, R. Drap, W. Weidemann, and M. Variakojis, “Re-interrogated end-state chip-scale atomic clock,” in Proceedings of 39th Annual Precise Time and Time Interval (PTTI) Meeting, Long Beach, CA, 233–248 (2007).
  15. J. F. DeNatale, R. L. Borwick, C. Tsai, P. A. Stupar, Y. Lin, R. A. Newgard, R. W. Berquist, and M. Zhu, “Compact, low-power chip-scale atomic clock,” in Position, Location and Navigation Symposium, 2008 IEEE/ION, 5–8 May, 67–70, (2008).
  16. P. D. D. Schwindt, Y. Y. Jau, H. Partner, D. K. Serkland, R. Boye, L. Fang, A. Casias, R. P. Manginell, M. Moorman, J. Prestage, and N. Yu, “Micro ion frequency standard,” Proc. SPIE8031, 803100 (2011).
  17. A. H. Daane, D. H. Dennison, and F. H. Spedding, “The preparation of samarium and ytterbium metals,” J. Am. Chem. Soc.75(9), 2272–2273 (1953). [CrossRef]
  18. E. J. Onstott, “The preparation of samarium metal with calcium,” J. Am. Chem. Soc.77(3), 812–813 (1955). [CrossRef]
  19. Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, “Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice,” Phys. Rev. Lett.96(8), 083002 (2006). [CrossRef] [PubMed]
  20. D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Monroe, “Ion trap in a semiconductor chip,” Nat. Phys.2(1), 36–39 (2006). [CrossRef]
  21. J. M. Amini, J. Britton, D. Leibfried, and D. J. Wineland, “Microfabricated chip traps for ions,” Atomic Chips (Wiley-VCH, 2012).
  22. T. Hong, C. Cramer, E. Cook, W. Nagourney, and E. N. Fortson, “Observation of the 1S0-3P0 transition in atomic ytterbium for optical clocks and qubit arrays,” Opt. Lett.30(19), 2644–2646 (2005). [CrossRef] [PubMed]
  23. R. E. Cavicchi, J. S. Suehle, P. Chaparala, K. G. Kreider, M. Gaitan, and S. Semancik, “Micro-hotplate gas sensor,” Tech. Digest 1994, Sol. State Sensor Actuator Workshop, Hilton Head, SC, 53–56 (1994).
  24. R. P. Manginell, D. R. Adkins, M. W. Moorman, R. Hadizadeh, D. Copic, D. A. Porter, J. M. Anderson, V. M. Hietala, J. R. Bryan, D. R. Wheeler, K. B. Pfeifer, and A. Rumpf, “Mass-sensitive microfabricated chemical preconcentrator,” J. Microelectromech. Syst.17(6), 1396–1407 (2008). [CrossRef]
  25. J. McDonald, “Microthermal imaging in the infrared,” http://www.Electronics-Cooling.com/Resources/EC_Articles/JAN97/jan97_04.htm ; http://www.latigooptics.com/pubs&seminars/1997_microthermal_imaging.PDF .
  26. R. P. Manginell, J. H. Smith, A. J. Ricco, D. J. Moreno, R. C. Hughes, R. J. Huber, and S. D. Senturia, “Selective, pulsed CVD of platinum on microbridge gas sensors,” Tech. Digest 1996, Solid State Sensors Actuators Workshop, Hilton Head, SC, 53–56 (1996).
  27. S. S. Narine and A. J. Slavin, “Use of the quartz crystal microbalance to measure the mass of submonolayer deposits: Measuring the stoichiometry of surface oxides,” J. Vac. Sci. Technol. A16(3), 1857–1862 (1998). [CrossRef]
  28. S. Knappe, V. Velichansky, H. G. Robinson, J. Kitching, and L. Hollberg, “Compact atomic vapor cells fabricated by laser-induced heating of hollow-core glass fibers,” Rev. Sci. Instrum.74(6), 3142 (2003). [CrossRef]
  29. L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett.84(14), 2694–2696 (2004). [CrossRef]
  30. S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett.30(18), 2351–2353 (2005). [CrossRef] [PubMed]
  31. L. A. Liew, J. Moreland, and V. Gerginov, “Wafer-level filling of microfabricated atomic vapor cells based on thin-film deposition and photolysis of cesium azide,” Appl. Phys. Lett.90(11), 114106 (2007). [CrossRef]
  32. R. P. Manginell, J. M. Bauer, M. W. Moorman, L. J. Sanchez, J. M. Anderson, J. J. Whiting, D. A. Porter, D. Copic, and K. E. Achyuthan, “A monolithically-integrated μGC chemical sensor system,” Sensors (Basel Switzerland)11(7), 6517–6532 (2011). [CrossRef]
  33. D. Prestage and G. L. Weaver, “Atomic clocks and oscillators for deep-space navigation and radio science,” Proc. IEEE95(11), 2235–2247 (2007). [CrossRef]
  34. C. Vauchier, D. Charlot, G. Delapierre, and A. Accorsi, “Thinfilm gas catalytic microsensor,” Sens. Actuators, B.5(1–4), 33–36 (1991). [CrossRef]
  35. J. J. Lagowski, “Solution phenomena in liquid ammonia,” Pure Appl. Chem.25(2), 429–456 (1971). [CrossRef]
  36. J. C. Warf and W. L. Korst, “Solutions of europium and ytterbium metals in liquid ammonia,” J. Phys. Chem.60(11), 1590–1591 (1956). [CrossRef]
  37. K. Howell and L. L. Pytlewski, “The decomposition products of solutions of europium and ytterbium metals in liquid ammonia,” J. Less Common Met.19(4), 399–404 (1969). [CrossRef]
  38. S. Knappe, V. Velichansky, H. G. Robinson, L. Liew, J. Moreland, J. Kitching, and L. Hollberg, “Atomic vapor cells for miniature frequency references,” in Proceedings of 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, Institute of Electrical and Electronics Engineers, New York, 31–32 (2003).
  39. S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. Express13(4), 1249–1253 (2005). [CrossRef] [PubMed]
  40. E. J. Eklund, A. M. Shkel, S. Knappe, E. Donley, and J. Kitching, “Spherical rubidium vapor cells fabricated by micro glass blowing,” IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2007), Kobe, Japan, 171–174 (2007).
  41. E. J. Eklund and A. M. Shkel, “Glass blowing on a wafer lever,” J. Microelectromech. Syst.16(2), 232–239 (2007). [CrossRef]
  42. F. Gong, Y.-Y. Jau, K. Jensen, and W. Happer, “Electrolytic fabrication of atomic clock cells,” Rev. Sci. Instrum.77(7), 076101 (2006). [CrossRef]
  43. S. Radhakrishnan and A. Lal, “Alkali metal-wax micropackets for chip-scale atomic clocks,” Digest Tech. Papers of Transducers05, 23–26 (2005).
  44. E. W. Brooman, “Electrodeposition from liquid ammonia solutions,” Electrodep. Surf. Treat.2(1), 1–46 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited