OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 25137–25151

Micropulse water vapor differential absorption lidar: transmitter design and performance

Amin R. Nehrir, Kevin S. Repasky, and John L. Carlsten  »View Author Affiliations


Optics Express, Vol. 20, Issue 22, pp. 25137-25151 (2012)
http://dx.doi.org/10.1364/OE.20.025137


View Full Text Article

Enhanced HTML    Acrobat PDF (3487 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An all diode-laser-based micropulse differential absorption lidar (DIAL) laser transmitter for tropospheric water vapor and aerosol profiling is presented. The micropulse DIAL (MPD) transmitter utilizes two continuous wave (cw) external cavity diode lasers (ECDL) to seed an actively pulsed, overdriven tapered semiconductor optical amplifier (TSOA). The MPD laser produces up to 7 watts of peak power over a 1 µs pulse duration (7 µJ) and a 10 kHz pulse repetition frequency. Spectral switching between the online and offline seed lasers is achieved on a 1Hz basis using a fiber optic switch to allow for more accurate sampling of the atmospheric volume between the online and offline laser shots. The high laser spectral purity of greater than 0.9996 coupled with the broad tunability of the laser transmitter will allow for accurate measurements of tropospheric water vapor in a wide range of geographic locations under varying atmospheric conditions. This paper describes the design and performance characteristics of a third generation MPD laser transmitter with enhanced laser performance over the previous generation DIAL system.

© 2012 OSA

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(140.2020) Lasers and laser optics : Diode lasers
(140.4480) Lasers and laser optics : Optical amplifiers
(140.5960) Lasers and laser optics : Semiconductor lasers
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar

ToC Category:
Remote Sensing

History
Original Manuscript: September 5, 2012
Revised Manuscript: October 15, 2012
Manuscript Accepted: October 15, 2012
Published: October 18, 2012

Citation
Amin R. Nehrir, Kevin S. Repasky, and John L. Carlsten, "Micropulse water vapor differential absorption lidar: transmitter design and performance," Opt. Express 20, 25137-25151 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-22-25137


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. E. Trenberth, P. D. Jones, P. Ambenje, R. Bojariu, and D. Easterling, A Klein Tank, D. Parker, F. Rahimzadeh, J A Renwick, M. Rusticucci, B. Soden, and P. Zhai, “Observations: Surface and Atmospheric Climate Change. In: Climate change 2007: The physical Science Basis,” Contributions of Working Group to the Fourth Assesment Report of the Intergrovernmental Panel on Climate Change (2007).
  2. E. V. Browell, S. Ismail, and B. E. Grossmann, “Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region,” Appl. Opt.30(12), 1517–1524 (1991). [CrossRef] [PubMed]
  3. J. Bösenberg, “Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology,” Appl. Opt.37(18), 3845–3860 (1998). [CrossRef] [PubMed]
  4. V. Wulfmeyer and C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory,” Appl. Opt.40(30), 5304–5320 (2001). [CrossRef] [PubMed]
  5. A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, and S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE) - An Advanced Airborne DIAL Instrument, ” in Int. Laser Radar Conference, 281–288 (1996).
  6. E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B67(4), 399–410 (1998). [CrossRef]
  7. N. S. Higdon, E. V. Browell, P. Ponsardin, B. E. Grossmann, C. F. Butler, T. H. Chyba, M. N. Mayo, R. J. Allen, A. W. Heuser, W. B. Grant, S. Ismail, S. D. Mayor, and A. F. Carter, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt.33(27), 6422–6438 (1994). [CrossRef] [PubMed]
  8. G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B67(4), 427–431 (1998). [CrossRef]
  9. C. R. Prasad, V. A. Fromzel, J. S. Smucz, I. H. Hwang, and W. E. Hasselbrack, “A Diode-Pumped Cr:LiSAF Laser for UAV Based Water Vapor Differential Absorption Lidar (DIAL), ” in IEEE Int. Geosci. Rem. Sens. Symposium, 1465–1467 (2000).
  10. T. J. Axenson, N. P. Barnes, D. J. Reichle, and E. E. Koehler, “High-energy Q-switched 0.946-µm solid-state diode pumped laser,” J. Opt. Soc. Am. B19(7), 1535–1538 (2002). [CrossRef]
  11. J. D. Spinhirne, “Micro Pulse Lidar,” IEEE Trans. Geosci. Rem. Sens.31(1), 48–55 (1993). [CrossRef]
  12. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.110(9-10), 533–572 (2009). [CrossRef]
  13. A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere,” J. Atmos. Ocean. Technol.28(2), 131–147 (2011). [CrossRef]
  14. A. R. Nehrir, K. S. Repasky, J. A. Reagan, and J. L. Carlsten, “Optical Characterization of Continental and Biomass Burning Aerosols over Bozeman, Montana: A Case Study of the Aerosol Direct Effect,” J. Geophys. Res.116(D21), D21201 (2011). [CrossRef]
  15. A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water Vapor Profiling using a Widely Tunable, Amplified Diode Laser Based Differential Absorption Lidar (DIAL),” J. Atmos. Ocean. Technol.26(4), 733–745 (2009). [CrossRef]
  16. J. L. Machol, T. Ayers, K. T. Schwenz, K. W. Koenig, R. M. Hardesty, C. J. Senff, M. A. Krainak, J. B. Abshire, H. E. Bravo, and S. P. Sandberg, “Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor,” Appl. Opt.43(15), 3110–3121 (2004). [CrossRef] [PubMed]
  17. P. McNicholl and H. J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings,” Appl. Opt.24(17), 2757–2761 (1985). [CrossRef] [PubMed]
  18. K. S. Repasky, G. W. Switzer, C. W. Smith, and J. L. Carlsten, “Laser diode facet modal reflectivity measurements,” Appl. Opt.39(24), 4338–4344 (2000). [CrossRef] [PubMed]
  19. A. R. Nehrir, “Development of an Eye-Safe Diode-Laser-Based Micro-Pulse Differential Absorption Lidar (MP-DIAL) for Atmospheric Water vapor and Aerosol Studies,” Ph.D. Dissertation, Montana State University, Electrical and Computer Engineering Department, Bozeman, MT (2011).
  20. D. J. Bossert, G. C. Dente, and M. L. Tilton, “Filamentation in high-power tapered semiconductor amplifiers,” Proc. SPIE3001, 63–73 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited