OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25213–25227

Phase-locking and coherent power combining of broadband linearly chirped optical waves

Naresh Satyan, Arseny Vasilyev, George Rakuljic, Jeffrey O. White, and Amnon Yariv  »View Author Affiliations

Optics Express, Vol. 20, Issue 23, pp. 25213-25227 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2355 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose, analyze and demonstrate the optoelectronic phase-locking of optical waves whose frequencies are chirped continuously and rapidly with time. The optical waves are derived from a common optoelectronic swept-frequency laser based on a semiconductor laser in a negative feedback loop, with a precisely linear frequency chirp of 400 GHz in 2 ms. In contrast to monochromatic waves, a differential delay between two linearly chirped optical waves results in a mutual frequency difference, and an acoustooptic frequency shifter is therefore used to phase-lock the two waves. We demonstrate and characterize homodyne and heterodyne optical phase-locked loops with rapidly chirped waves, and show the ability to precisely control the phase of the chirped optical waveform using a digital electronic oscillator. A loop bandwidth of ∼ 60 kHz, and a residual phase error variance of < 0.01 rad2 between the chirped waves is obtained. Further, we demonstrate the simultaneous phase-locking of two optical paths to a common master waveform, and the ability to electronically control the resultant two-element optical phased array. The results of this work enable coherent power combining of high-power fiber amplifiers—where a rapidly chirping seed laser reduces stimulated Brillouin scattering—and electronic beam steering of chirped optical waves.

© 2012 OSA

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(140.3600) Lasers and laser optics : Lasers, tunable
(140.3298) Lasers and laser optics : Laser beam combining

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 6, 2012
Revised Manuscript: September 4, 2012
Manuscript Accepted: October 12, 2012
Published: October 22, 2012

Naresh Satyan, Arseny Vasilyev, George Rakuljic, Jeffrey O. White, and Amnon Yariv, "Phase-locking and coherent power combining of broadband linearly chirped optical waves," Opt. Express 20, 25213-25227 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Philipp, A. Scholtz, E. Bonek, and W. Leeb, “Costas loop experiments for a 10.6 μm communications receiver,” IEEE Trans. Commun.31, 1000–1002 (1983). [CrossRef]
  2. S. Saito, O. Nilsson, and Y. Yamamoto, “Coherent FSK transmitter using a negative feedback stabilised semiconductor laser,” Electron. Lett.20, 703–704 (1984). [CrossRef]
  3. L. Kazovsky, “Performance analysis and laser linewidth requirements for optical PSK heterodyne communications systems,” J. Lightwave Technol.4, 415–425 (1986). [CrossRef]
  4. J. M. Kahn, A. H. Gnauck, J. J. Veselka, S. K. Korotky, and B. L. Kasper, “4-Gb/s PSK homodyne transmission system using phase-locked semiconductor lasers,” IEEE Photon. Technol. Lett.2, 285–287 (1990). [CrossRef]
  5. F. Herzog, K. Kudielka, D. Erni, and W. Bächtold, “Optical phase locked loop for transparent inter-satellite communications,” Opt. Express13, 3816–3821 (2005). [CrossRef] [PubMed]
  6. U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photon. Technol. Lett.4, 936–938 (1992). [CrossRef]
  7. L. A. Johansson and A. J. Seeds, “Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop,” IEEE Photon. Technol. Lett.12, 690–692 (2000). [CrossRef]
  8. S. Takasaka, Y. Ozeki, S. Namiki, and M. Sakano, “External synchronization of 160-GHz optical beat signal by optical phase-locked loop technique,” IEEE Photon. Technol. Lett.18, 2457–2459 (2006). [CrossRef]
  9. T. von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, “Optical clock recovery methods: Review (Invited),” Opt. Fiber Technol.15, 363–372 (2009). [CrossRef]
  10. N. Satyan, W. Liang, and A. Yariv, “Coherence cloning using semiconductor laser optical phase-lock loops,” IEEE J. Quantum Electron.45, 755–761 (2009). [CrossRef]
  11. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron.11, 567–577 (2005). [CrossRef]
  12. L. Bartelt-Berger, U. Brauch, A. Giesen, H. Huegel, and H. Opower, “Power-scalable system of phase-locked single-mode diode lasers,” Appl. Opt.38, 5752–5760 (1999). [CrossRef]
  13. S. J. Augst, T. Y. Fan, and A. Sanchez, “Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers,” Opt. Lett.29, 474–476 (2004). [CrossRef] [PubMed]
  14. C. X. Yu, J. E. Kansky, S. E. J. Shaw, D. V. Murphy, and C. Higgs, “Coherent beam combining of large number of PM fibres in 2-D fibre array,” Electron. Lett.42, 1024–1025 (2006). [CrossRef]
  15. S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, “Beam combining of ytterbium fiber amplifiers (Invited),” J. Opt. Soc. Am. B24, 1707–1715 (2007). [CrossRef]
  16. N. Satyan, W. Liang, A. Kewitsch, G. Rakuljic, and A. Yariv, “Coherent power combination of semiconductor lasers Using optical phase-lock loops (Invited),” IEEE J. Sel. Top. Quantum Electron.15, 240–247 (2009). [CrossRef]
  17. W. Liang, N. Satyan, A. Yariv, A. Kewitsch, G. Rakuljic, F. Aflatouni, H. Hashemi, and J. Ungar, “Coherent power combination of two Master-oscillator-power-amplifier (MOPA) semiconductor lasers using optical phase lock loops,” Opt. Express15, 3201–3205 (2007). [CrossRef] [PubMed]
  18. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000). [CrossRef] [PubMed]
  19. L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10−19 Level,” Science303, 1843–1845 (2004). [CrossRef] [PubMed]
  20. E. Seise, A. Klenke, S. Breitkopf, M. Plötner, J. Limpert, and A. Tünnermann, “Coherently combined fiber laser system delivering 120μJ femtosecond pulses,” Opt. Lett.36, 439–441 (2011). [CrossRef] [PubMed]
  21. S. B. Weiss, M. E. Weber, and G. D. Goodno, “Group delay locking of broadband phased lasers,” in “Lasers, Sources, and Related Photonic Devices,” (Optical Society of America, 2012), p. AM3A.5.
  22. K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol.14, 50 –57 (1996). [CrossRef]
  23. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol.19, 1691–1697 (2001). [CrossRef]
  24. J. M. C. Boggio, J. D. Marconi, and H. L. Fragnito, “Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions,” J. Lightwave Technol.23, 3808–3814 (2005). [CrossRef]
  25. Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol.6, 710 –719 (1988). [CrossRef]
  26. G. D. Goodno, S. J. McNaught, J. E. Rothenberg, T. S. McComb, P. A. Thielen, M. G. Wickham, and M. E. Weber, “Active phase and polarization locking of a 1.4 kW fiber amplifier,” Opt. Lett.35, 1542–1544 (2010). [CrossRef] [PubMed]
  27. J. O. White, A. Vasilyev, J. P. Cahill, N. Satyan, O. Okusaga, G. Rakuljic, C. E. Mungan, and A. Yariv, “Suppression of stimulated Brillouin scattering in optical fibers using a linearly chirped diode laser,” Opt. Express20, 15872–15881 (2012). [CrossRef] [PubMed]
  28. N. Satyan, A. Vasilyev, G. Rakuljic, J. O. White, and A. Yariv, “Phase-locking and coherent power combining of linearly chirped optical waves,” in “CLEO:2012 - Laser Science to Photonic Applications,” (Optical Society of America, 2012), p. CF2N.1.
  29. C. E. Mungan, S. D. Rogers, N. Satyan, and J. O. White, “Time-dependent modeling of Brillouin scattering in optical fibers excited by a chirped diode laser,” IEEE J. Quantum Electron. (to be published).
  30. N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express17, 15991–15999 (2009). [CrossRef] [PubMed]
  31. F. M. Gardner, Phaselock Techniques (Hoboken, NJ: John Wiley and Sons, 2005). [CrossRef]
  32. L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech.47, 1257–1264 (1999). [CrossRef]
  33. C. D. Nabors, “Effects of phase errors on coherent emitter arrays,” Appl. Opt.33, 2284–2289 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited