OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25325–25332

Polarization tunable transmission through plasmonic arrays of elliptical nanopores

Pierre Lovera, Daniel Jones, Brian Corbett, and Alan O’Riordan  »View Author Affiliations


Optics Express, Vol. 20, Issue 23, pp. 25325-25332 (2012)
http://dx.doi.org/10.1364/OE.20.025325


View Full Text Article

Enhanced HTML    Acrobat PDF (1557 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polarization dependent transmission through thin gold films bearing arrays of elliptical nanopores and assembled at transparent substrates is explored. Far field transmission spectra with incident light polarized along the short and long axis of the ellipses show asymmetric peaks. Near-field finite difference time domain simulated electric field profiles suggest these features are related to Fano resonances between the (± 1, 0) Surface Plasmon Polariton mode and the ( ± 1, 0) Rayleigh Anomaly. The unique spectral signature of these samples makes them attractive for visible and near infrared tags for anti-counterfeiting applications.

© 2012 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(260.5740) Physical optics : Resonance
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Diffraction and Gratings

History
Original Manuscript: May 15, 2012
Revised Manuscript: August 13, 2012
Manuscript Accepted: September 5, 2012
Published: October 23, 2012

Citation
Pierre Lovera, Daniel Jones, Brian Corbett, and Alan O’Riordan, "Polarization tunable transmission through plasmonic arrays of elliptical nanopores," Opt. Express 20, 25325-25332 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-23-25325


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  2. M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays,” Opt. Express18(21), 22255–22270 (2010). [CrossRef] [PubMed]
  3. S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B77(7), 075401 (2008). [CrossRef]
  4. T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of Plasmon Resonances in Metal Films with Nanohole Arrays for Biosensing Applications,” Small7(12), 1653–1663 (2011). [CrossRef] [PubMed]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  6. Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express18(13), 14056–14062 (2010). [CrossRef] [PubMed]
  7. H.-S. Lee, Y.-T. Yoon, S. S. Lee, S.-H. Kim, and K.-D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express15(23), 15457–15463 (2007). [CrossRef] [PubMed]
  8. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett.12(8), 4349–4354 (2012). [CrossRef] [PubMed]
  9. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res.41(8), 1049–1057 (2008). [CrossRef] [PubMed]
  10. A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010). [CrossRef] [PubMed]
  11. A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett.90(24), 243110 (2007). [CrossRef]
  12. A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108(29), 11784–11789 (2011). [CrossRef] [PubMed]
  13. A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt.7(2), S90–S96 (2005). [CrossRef]
  14. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004). [CrossRef]
  15. J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, “Polarization control of optical transmission of a periodic array of elliptical nanoholes in a metal film,” Opt. Lett.29(12), 1414–1416 (2004). [CrossRef] [PubMed]
  16. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004). [CrossRef] [PubMed]
  17. J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “The plasmonic properties of elliptical metallic hole arrays,” Appl. Phys. Lett.94(3), 033101 (2009). [CrossRef]
  18. X. F. Ren, P. Zhang, G. P. Guo, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Polarization properties of subwavelength hole arrays consisting of rectangular holes,” Appl. Phys. B-Lasers Opt.91(3-4), 601–604 (2008). [CrossRef]
  19. B. Sepúlveda, Y. Alaverdyan, J. Alegret, M. Käll, and P. Johansson, “Shape effects in the localized surface plasmon resonance of single nanoholes in thin metal films,” Opt. Express16(8), 5609–5616 (2008). [CrossRef] [PubMed]
  20. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72(4), 045421 (2005). [CrossRef]
  21. S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett.93(10), 101113 (2008). [CrossRef]
  22. A. A. Yanik, R. Adato, S. Erramilli, and H. Altug, “Hybridized nanocavities as single-polarized plasmonic antennas,” Opt. Express17(23), 20900–20910 (2009). [CrossRef] [PubMed]
  23. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004). [CrossRef] [PubMed]
  24. T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry,” Nano Lett.12(2), 1026–1031 (2012). [CrossRef] [PubMed]
  25. P. Lovera, D. Jones, and A. O’Riordan, “Elliptical nanohole array in thin gold film as micrometer sized optical filter set for fluorescent-labelled assays,” Journal of Physics: Conference Series307, 012006 (2011). [CrossRef]
  26. JDFTD3D, www.thecomputationalphysicist.com .
  27. R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh, and A. G. Brolo, “Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film,” Nano Lett.5(7), 1243–1246 (2005). [CrossRef] [PubMed]
  28. H. Gao, J. Henzie, and T. W. Odom, “Direct Evidence for Surface Plasmon-Mediated Enhanced Light Transmission through Metallic Nanohole Arrays,” Nano Lett.6(9), 2104–2108 (2006). [CrossRef] [PubMed]
  29. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998). [CrossRef]
  30. S. A. Maier, Plasmonics: Fundamentals and Applications, Springer (New York, 2007).
  31. Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic Systems Unveiled by Fano Resonances,” ACS Nano6(2), 1830–1838 (2012). [CrossRef] [PubMed]
  32. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010). [CrossRef] [PubMed]
  33. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010). [CrossRef]
  34. M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K. G, Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express19(6), 4949–4956 (2011). [CrossRef] [PubMed]
  35. Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano4(3), 1664–1670 (2010). [CrossRef] [PubMed]
  36. J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, “Wavelength dependent birefringence of surface plasmon polaritonic crystals,” Phys. Rev. B70(23), 233403 (2004). [CrossRef]
  37. S.-H. Chang, S. Gray, and G. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express13(8), 3150–3165 (2005). [CrossRef] [PubMed]
  38. P. Lalanne, J. C. Rodier, and J. P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A, Pure Appl. Opt.7(8), 422–426 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited