OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25357–25368

Extracting and compensating dispersion mismatch in ultrahigh-resolution Fourier domain OCT imaging of the retina

WooJhon Choi, Bernhard Baumann, Eric A. Swanson, and James G. Fujimoto  »View Author Affiliations


Optics Express, Vol. 20, Issue 23, pp. 25357-25368 (2012)
http://dx.doi.org/10.1364/OE.20.025357


View Full Text Article

Enhanced HTML    Acrobat PDF (9339 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a numerical approach to extract the dispersion mismatch in ultrahigh-resolution Fourier domain optical coherence tomography (OCT) imaging of the retina. The method draws upon an analogy with a Shack-Hartmann wavefront sensor. By exploiting mathematical similarities between the expressions for aberration in optical imaging and dispersion mismatch in spectral / Fourier domain OCT, Shack-Hartmann principles can be extended from the two-dimensional paraxial wavevector space (or the x-y plane in the spatial domain) to the one-dimensional wavenumber space (or the z-axis in the spatial domain). For OCT imaging of the retina, different retinal layers, such as the retinal nerve fiber layer (RNFL), the photoreceptor inner and outer segment junction (IS/OS), or all the retinal layers near the retinal pigment epithelium (RPE) can be used as point source beacons in the axial direction, analogous to point source beacons used in conventional two-dimensional Shack-Hartman wavefront sensors for aberration characterization. Subtleties regarding speckle phenomena in optical imaging, which affect the Shack-Hartmann wavefront sensor used in adaptive optics, also occur analogously in this application. Using this approach and carefully suppressing speckle, the dispersion mismatch in spectral / Fourier domain OCT retinal imaging can be successfully extracted numerically and used for numerical dispersion compensation to generate sharper, ultrahigh-resolution OCT images.

© 2012 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(260.2030) Physical optics : Dispersion

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 27, 2012
Revised Manuscript: October 4, 2012
Manuscript Accepted: October 9, 2012
Published: October 24, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Citation
WooJhon Choi, Bernhard Baumann, Eric A. Swanson, and James G. Fujimoto, "Extracting and compensating dispersion mismatch in ultrahigh-resolution Fourier domain OCT imaging of the retina," Opt. Express 20, 25357-25368 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-23-25357


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993). [CrossRef] [PubMed]
  3. J. A. Izatt, M. R. Hee, D. Huang, J. G. Fujimoto, E. A. Swanson, C. P. Lin, J. S. Shuman, and C. A. Puliafito, “Ophthalmic diagnostics using optical coherence tomography, Proceedings of Ophthalmic Technologies III,” (Spie - Int Soc Opt. Eng.1877, 136–143 (1993).
  4. W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer-Verlag, 2008).
  5. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001). [CrossRef] [PubMed]
  6. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express12(10), 2156–2165 (2004). [CrossRef] [PubMed]
  7. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004). [CrossRef] [PubMed]
  8. B. Cense, N. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. Bouma, G. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express12(11), 2435–2447 (2004). [CrossRef] [PubMed]
  9. W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol.121(5), 695–706 (2003). [CrossRef] [PubMed]
  10. T. H. Ko, J. G. Fujimoto, J. S. Schuman, L. A. Paunescu, A. M. Kowalevicz, I. Hartl, W. Drexler, G. Wollstein, H. Ishikawa, and J. S. Duker, “Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular pathology,” Ophthalmology112(11), 1922, e1–e15 (2005). [CrossRef] [PubMed]
  11. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999). [CrossRef] [PubMed]
  12. C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt.4(1), 144–151 (1999). [CrossRef] [PubMed]
  13. Y. Yasuno, Y. J. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15(10), 6121–6139 (2007). [CrossRef] [PubMed]
  14. D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express20(6), 6761–6776 (2012). [CrossRef] [PubMed]
  15. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95–105 (1999). [CrossRef] [PubMed]
  16. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002). [CrossRef] [PubMed]
  17. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  18. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  19. J. Z. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a hartmann-shack wave-front sensor,” J. Opt. Soc. Am. A11(7), 1949–1957 (1994). [CrossRef] [PubMed]
  20. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express16(12), 8406–8420 (2008). [CrossRef] [PubMed]
  21. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A18(3), 497–506 (2001). [CrossRef] [PubMed]
  22. J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts & Company, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited