OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25369–25377

SC-FDE for MMF short reach optical interconnects using directly modulated 850 nm VCSELs

Victor S. C. Teichmann, Andre N. Barreto, Tien-Thang Pham, Roberto Rodes, Idelfonso T. Monroy, and Darli A. A. Mello  »View Author Affiliations


Optics Express, Vol. 20, Issue 23, pp. 25369-25377 (2012)
http://dx.doi.org/10.1364/OE.20.025369


View Full Text Article

Enhanced HTML    Acrobat PDF (876 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose the use of single-carrier frequency-domain equalization (SC-FDE) for the compensation of modal dispersion in short distance optical links using multimode fibers and 850 nm VCSELs. By post-processing of experimental data, we demonstrate, at 7.9% overhead, the error-free transmission (over a 4 Mbit sequence) of OOK-modulated 5 Gbps over 2443 meters of OM3 fiber (with a nominal 3300 MHz×km bandwidth). The proposed solution may be applied as a low cost alternative for data center and supercomputer interconnects.

© 2012 OSA

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 2, 2012
Revised Manuscript: September 6, 2012
Manuscript Accepted: September 22, 2012
Published: October 24, 2012

Citation
Victor S. C. Teichmann, Andre N. Barreto, Tien-Thang Pham, Roberto Rodes, Idelfonso T. Monroy, and Darli A. A. Mello, "SC-FDE for MMF short reach optical interconnects using directly modulated 850 nm VCSELs," Opt. Express 20, 25369-25377 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-23-25369


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Rylyakov, C. L. Schow, F. E. Doany, B. G. Lee, C. Jahnes, Y. Kwark, C. Baks, D. M. Kuchta, and J. A. Kash, “A 24-channel 300 Gb/s 8.2 pJ/bit full-duplex fiber-coupled optical transceiver module based on a single holey CMOS IC,” in Optical Fiber Communication Conference (Optical Society of America, 2010), pp. 1–3.
  2. A. Vahdat, Hong Liu, Xiaoxue Zhao, and C. Johnson, “The emerging optical data center,” in Optical Fiber Communication Conference (Optical Society of America, 2011), pp. 1–3.
  3. L. Aronson and L. Buckman, “Guide to HP Labs ROFL/OFL fiber measurements from 12/15/97–12/19/97 IEEE 802.3 10 GbE Study Group,” http://www.ieee802.org/3/z/mbi/index/html .
  4. L. Raddatz, I. H. White, D. G. Cunningham, and M. C. Nowell, “An experimental and theoretical study of the offset launch technique for the enhancement of the bandwidth of multimode fiber links,” J. Lightwave Technol.16, 324–331 (1998). [CrossRef]
  5. L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, and W. Gong, “Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s local area networks,” IEEE Photon. Technol. Lett.14, 702–704 (2002). [CrossRef]
  6. C. F. Lam, Hong Liu, B. Koley, Xiaoxue Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: what’s needed for datacenter network operations,” IEEE Commun. Mag.48, 32–39 (2010). [CrossRef]
  7. D. J. F. Barros and J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and on-off keying in direct-detection multimode fiber links,” J. Lightwave Technol.29, 2299–2309 (2011). [CrossRef]
  8. J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett.18, 205–207 (2006). [CrossRef]
  9. X. Q. Jin, J. M. Tang, K. Qiu, and P. S. Spencer, “Statistical investigations of the transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” J. Lightwave Technol.26, 3216–3224 (2008). [CrossRef]
  10. Y. Benlachtar, R. Bouziane, R. I. Killey, C. R. Berger, P. Milder, R. Koutsoyannis, J. C. Hoe, M. Pusc, and M. Glick, “Optical OFDM for the data center,” in Proceedings of International Conference on Transparent Optical Networks (2010), pp. 1–4. [CrossRef]
  11. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol.27, 189–204 (2009). [CrossRef]
  12. N. Benvenuto and S. Tomasin, “On the comparison between OFDM and single carrier modulation with a DFE using a frequency-domain feedforward filter,” IEEE Trans. Commun.50, 947–955 (2002). [CrossRef]
  13. A. Gusmao, R. Dinis, J. Conceicao, and N. Esteves, “Comparison of two modulation choices for broadband wireless communications,” in Proceedings of IEEE Vehicular Technology Conference (2000), pp. 1300–1305.
  14. A. Czylwik, “Comparison between adaptive OFDM and single carrier modulation with frequency domain equalization,” in Proceedings of IEEE Vehicular Technology Conference (1997), pp. 865–869.
  15. M. Wolf, L. Grobe, M. R. Rieche, A. Koher, and J. Vucic, “Block transmission with linear frequency domain equalization for dispersive optical channels with direct detection,” in Proceedings of International Conference on Transparent Optical Networks (2010), pp. 1–8. [CrossRef]
  16. M. Wolf and L. Grobe, “Block transmission with frequency domain equalization in the presence of colored noise,” in Proceedings of International Conference on Transparent Optical Networks (2011), pp. 1–4. [CrossRef]
  17. D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag.40, 58–66 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited