OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25400–25408

Michelson interferometer with diffractively-coupled arm resonators in second-order Littrow configuration

Michael Britzger, Maximilian H. Wimmer, Alexander Khalaidovski, Daniel Friedrich, Stefanie Kroker, Frank Brückner, Ernst-Bernhard Kley, Andreas Tünnermann, Karsten Danzmann, and Roman Schnabel  »View Author Affiliations


Optics Express, Vol. 20, Issue 23, pp. 25400-25408 (2012)
http://dx.doi.org/10.1364/OE.20.025400


View Full Text Article

Enhanced HTML    Acrobat PDF (2200 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Michelson-type laser-interferometric gravitational-wave (GW) observatories employ very high light powers as well as transmissively-coupled Fabry-Perot arm resonators in order to realize high measurement sensitivities. Due to the absorption in the transmissive optics, high powers lead to thermal lensing and hence to thermal distortions of the laser beam profile, which sets a limit on the maximal light power employable in GW observatories. Here, we propose and realize a Michelson-type laser interferometer with arm resonators whose coupling components are all-reflective second-order Littrow gratings. In principle such gratings allow high finesse values of the resonators but avoid bulk transmission of the laser light and thus the corresponding thermal beam distortion. The gratings used have three diffraction orders, which leads to the creation of a second signal port. We theoretically analyze the signal response of the proposed topology and show that it is equivalent to a conventional Michelson-type interferometer. In our proof-of-principle experiment we generated phase-modulation signals inside the arm resonators and detected them simultaneously at the two signal ports. The sum signal was shown to be equivalent to a single-output-port Michelson interferometer with transmissively-coupled arm cavities, taking into account optical loss. The proposed and demonstrated topology is a possible approach for future all-reflective GW observatory designs.

© 2012 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(050.2230) Diffraction and gratings : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(230.1950) Optical devices : Diffraction gratings
(230.5750) Optical devices : Resonators

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: August 30, 2012
Revised Manuscript: October 2, 2012
Manuscript Accepted: October 2, 2012
Published: October 24, 2012

Citation
Michael Britzger, Maximilian H. Wimmer, Alexander Khalaidovski, Daniel Friedrich, Stefanie Kroker, Frank Brückner, Ernst-Bernhard Kley, Andreas Tünnermann, Karsten Danzmann, and Roman Schnabel, "Michelson interferometer with diffractively-coupled arm resonators in second-order Littrow configuration," Opt. Express 20, 25400-25408 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-23-25400


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. The LIGO Scientific Collaboration, “LIGO: the laser interferometer gravitational-wave observatory,” Rep. Prog. Phys.72, 076901 (2009).
  2. The Virgo Collaboration, “Virgo: a laser interferometer to detect gravitational waves,” J. Instrum.7, P03012 (2012).
  3. H. Grote (for the LIGO Scientific Collaboration), “The GEO 600 status,” Class. Quantum Grav.27, 084003 (2010). [CrossRef]
  4. ET Science Team, “Einstein gravitational wave telescope. Conceptual design study,” Internal report ET-0106C-10 (2011).
  5. K. A. Strain, K. Danzmann, J. Mizuno, P. G. Nelson, A. Rüdiger, R. Schilling, and W. Winkler, “Thermal lensing in recycling interferometric gravitational-wave detectors,” Phys. Lett. A194, 124–132 (1994). [CrossRef]
  6. V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, “Thermo-refractive noise in gravitational-wave antennae,” Phys. Lett. A271, 303–307 (2000). [CrossRef]
  7. Y. Levin, “Internal thermal noise in the LIGO test masses: a direct approach,” Phys. Rev. D57, 659–663 (1998). [CrossRef]
  8. R. W. P. Drever, “Concepts for extending the ultimate sensitivity of interferometric gravitational-wave detectors using non-transmissive optics with diffractive or holographic coupling,” in Proceedings of the 7th Marcel Grossman meeting on General Relativity, M. Keiser and R. T. Jantzen (eds.), World Scientific, Singapore (1995).
  9. R. Nawrodt, S. Rowan, J. Hough, M. Punturo, F. Ricci, and J.-Y. Vinet, “Challenges in thermal noise for 3rd generation of gravitational wave detectors,” Gen. Relativ. Gravit.43, 593–622 (2011). [CrossRef]
  10. K.-X. Sun and R. L. Byer, “All-reflective Michelson, Sagnac, and Fabry-Perot interferometers based on grating beam splitters,” Opt. Lett.23, 567–569 (1997). [CrossRef]
  11. T. Clausnitzer, E.-B. Kley, A. Tünnermann, A. Bunkowski, O. Burmeister, R. Schnabel, K. Danzmann, S. Gliech, and A. Duparré, “Ultra low-loss low-efficiency diffraction gratings,” Opt. Express13, 4370–4378 (2005). [CrossRef] [PubMed]
  12. D. Friedrich, O. Burmeister, A. Bunkowski, T. Clausnitzer, S. Fahr, E.-B. Kley, A. Tünnermann, K. Danzmann, and R. Schnabel, “Diffractive beam splitter characterization via a power-recycled interferometer,” Opt. Lett.33, 101–103 (2008). [CrossRef] [PubMed]
  13. A. Bunkowski, O. Burmeister, K. Danzmann, R. Schnabel, T. Clausnitzer, E.-B. Kley, and A. Tünnermann, “Optical characterization of ultra-high diffraction efficiency gratings,” Appl. Opt.45, 5795–5799 (2006). [CrossRef] [PubMed]
  14. A. Freise, A. Bunkowski, and R. Schnabel, “Phase and alignment noise in grating interferometers,” New J. Phys.9, 433 (2007). [CrossRef]
  15. A. Bunkowski, O. Burmeister, K. Danzmann, and R. Schnabel, “Input-output relations for a 3-port grating coupled Fabry-Perot cavity,” Opt. Lett.30, 1183–1185 (2005). [CrossRef] [PubMed]
  16. A. Bunkowski, O. Burmeister, K. Danzmann, R. Schnabel, T. Clausnitzer, E.-B. Kley, and A. Tünnermann, “Demonstration of 3-port grating phase relations,” Opt. Lett.31, 2384–2386 (2006). [CrossRef] [PubMed]
  17. A. Bunkowski, O. Burmeister, P. Beyersdorf, K. Danzmann, R. Schnabel, T. Clausnitzer, E.-B. Kley, and A. Tünnermann, “Low-loss grating for coupling to a high-finesse cavity,” Opt. Lett.29, 2342–2344 (2004). [CrossRef] [PubMed]
  18. O. Burmeister, M. Britzger, A. Thüring, D. Friedrich, F. Brückner, K. Danzmann, and R. Schnabel, “All-reflective coupling of two optical cavities with 3-port diffraction gratings,” Opt. Express18, 9119–9132 (2010). [CrossRef] [PubMed]
  19. M. Britzger, D. Friedrich, S. Kroker, F. Brückner, O. Burmeister, E. B. Kley, A. Tünnermann, K. Danzmann, and R. Schnabel, “Diffractively coupled Fabry-Perot resonator with power-recycling,” Opt. Express19, 14964–14975 (2011). [CrossRef] [PubMed]
  20. G. Heinzel, “Advanced optical techniques for laser-interferometric gravitational-wave detectors,” PhD Thesis, Hannover (1999).
  21. B. Willke, N. Uehara, E. K. Gustafson, and R. L. Byer, “Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner,” Opt. Lett.23, 1704–1706 (1998). [CrossRef]
  22. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B.31, 97–105 (1983). [CrossRef]
  23. D. Shoemaker, R. Schilling, L. Schnupp, W. Winkler, K. Maischberger, and A. Rüdiger, “Noise behavior of the Garching 30-meter prototype gravitational-wave detector,” Phys. Rev. D38, 423–432 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited