OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25644–25653

Selective enhanced resonances of two asymmetric terahertz nano resonators

Young-Mi Bahk, Jae-Wook Choi, Jisoo Kyoung, Hyeong-Ryeol Park, Kwang Jun Ahn, and Dai-Sik Kim  »View Author Affiliations

Optics Express, Vol. 20, Issue 23, pp. 25644-25653 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2621 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We studied the electromagnetic interaction between two asymmetric terahertz nano resonators, rectangular holes which have a few hundred micron lengths but nanoscale widths. We report that the dominant resonant transmission of the structures can be modulated by the horizontal distance between two rectangles due to the different oscillation strength of the asymmetric coupling at two different resonance frequencies. Our results are significant for an optimum design of rectangular holes in terahertz frequency regime for applications such as sensitive nanoparticle detection and terahertz filters.

© 2012 OSA

OCIS Codes
(260.5740) Physical optics : Resonance
(300.6495) Spectroscopy : Spectroscopy, teraherz
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: July 24, 2012
Revised Manuscript: October 22, 2012
Manuscript Accepted: October 23, 2012
Published: October 29, 2012

Young-Mi Bahk, Jae-Wook Choi, Jisoo Kyoung, Hyeong-Ryeol Park, Kwang Jun Ahn, and Dai-Sik Kim, "Selective enhanced resonances of two asymmetric terahertz nano resonators," Opt. Express 20, 25644-25653 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  2. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004). [CrossRef] [PubMed]
  3. J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006). [CrossRef]
  4. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007). [CrossRef] [PubMed]
  5. F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010). [CrossRef]
  6. A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt.7(2), S90–S96 (2005). [CrossRef]
  7. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006). [CrossRef] [PubMed]
  8. A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite arrays of slits,” Phys. Rev. B76(23), 235430 (2007). [CrossRef]
  9. A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B76(19), 195414 (2007). [CrossRef]
  10. M. Shalaby, H. Merbold, M. Peccianti, L. Razzari, G. Sharma, T. Ozaki, R. Morandotti, T. Feurer, A. Weber, L. Heyderman, B. Patterson, and H. Sigg, “Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays,” Appl. Phys. Lett.99(4), 041110 (2011). [CrossRef]
  11. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008). [CrossRef] [PubMed]
  12. P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, “Distance dependent spectral tuning of two coupled metal nanoparticles,” Nano Lett.8(4), 1174–1178 (2008). [CrossRef] [PubMed]
  13. I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett.103(21), 213902 (2009). [CrossRef] [PubMed]
  14. H. Fischer and O. J. F. Martin, “Retardation-induced plasmonic blinking in coupled nanoparticles,” Opt. Lett.34(3), 368–370 (2009). [CrossRef] [PubMed]
  15. D. S. Kim, J. Heo, S. H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, “Real-space mapping of the strongly coupled plasmons of nanoparticle dimers,” Nano Lett.9(10), 3619–3625 (2009). [CrossRef] [PubMed]
  16. V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010). [CrossRef] [PubMed]
  17. N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. Engl.49(51), 9838–9852 (2010). [CrossRef] [PubMed]
  18. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10(7), 2721–2726 (2010). [CrossRef] [PubMed]
  19. R. Taubert, R. Ameling, T. Weiss, A. Christ, and H. Giessen, “From near-field to far-field coupling in the third dimension: retarded interaction of particle plasmons,” Nano Lett.11(10), 4421–4424 (2011). [CrossRef] [PubMed]
  20. D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes,” Opt. Express19(16), 15047–15061 (2011). [CrossRef] [PubMed]
  21. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011). [CrossRef] [PubMed]
  22. A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett.11(4), 1685–1689 (2011). [CrossRef] [PubMed]
  23. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007). [CrossRef] [PubMed]
  24. A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the fano interference in a plasmonic lattice,” Phys. Rev. B76(20), 201405 (2007). [CrossRef]
  25. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett.8(8), 2171–2175 (2008). [CrossRef] [PubMed]
  26. C.-Y. Chen, I.-W. Un, N.-H. Tai, and T.-J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express17(17), 15372–15380 (2009). [CrossRef] [PubMed]
  27. Z. Liu and G. Jin, “Phase effects in the enhanced transmission through compound subwavelength rectangular hole arrays,” J. Appl. Phys.106(6), 063122–063126 (2009). [CrossRef]
  28. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics4(5), 312–315 (2010). [CrossRef]
  29. T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat Commun2, 481 (2011). [CrossRef] [PubMed]
  30. E. Hendry, R. V. Mikhaylovskiy, L. D. Barron, M. Kadodwala, and T. J. Davis, “Chiral electromagnetic fields generated by arrays of nanoslits,” Nano Lett.12(7), 3640–3644 (2012). [CrossRef] [PubMed]
  31. H.-R. Park, Y.-M. Bahk, K. J. Ahn, Q. H. Park, D.-S. Kim, L. Martín-Moreno, F. J. García-Vidal, and J. Bravo-Abad, “Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas,” ACS Nano5(10), 8340–8345 (2011). [CrossRef] [PubMed]
  32. Y. M. Bahk, H. R. Park, K. J. Ahn, H. S. Kim, Y. H. Ahn, D.-S. Kim, J. Bravo-Abad, L. Martin-Moreno, and F. J. Garcia-Vidal, “Anomalous band formation in arrays of terahertz nanoresonators,” Phys. Rev. Lett.106(1), 013902 (2011). [CrossRef] [PubMed]
  33. M. Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett.14(20), 1128–1130 (1989). [CrossRef] [PubMed]
  34. Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro‐optic field detectors,” Appl. Phys. Lett.68(21), 2924–2926 (1996). [CrossRef]
  35. J. S. Kyoung, M. A. Seo, H. R. Park, K. J. Ahn, and D. S. Kim, “Far field detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism,” Opt. Commun.283(24), 4907–4910 (2010). [CrossRef]
  36. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009). [CrossRef]
  37. H. R. Park, Y. M. Park, H. S. Kim, J. S. Kyoung, M. A. Seo, D. J. Park, Y. H. Ahn, K. J. Ahn, and D. S. Kim, “Terahertz nanoresonators: giant field enhancement and ultrabroadband performance,” Appl. Phys. Lett.96(12), 121106 (2010). [CrossRef]
  38. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett.95(10), 103901 (2005). [CrossRef] [PubMed]
  39. J. H. Kang, J.-H. Choe, D. S. Kim, and Q. H. Park, “Substrate effect on aperture resonances in a thin metal film,” Opt. Express17(18), 15652–15658 (2009). [CrossRef] [PubMed]
  40. J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett.93(22), 227401 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited