OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25826–25833

Control of periodic ripples growth on metals by femtosecond laser ellipticity

Yanfu Tang, Jianjun Yang, Bo Zhao, Mingwei Wang, and Xiaonong Zhu  »View Author Affiliations

Optics Express, Vol. 20, Issue 23, pp. 25826-25833 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1182 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Formation of the periodic ripples on metallic surfaces is investigated comprehensively using variable ellipticities of femtosecond lasers. Compared with the linearly polarized incidence, the well defined grating-like ripple structures rather than the uniform arrays of nanoparticle can always be obtained for the elliptical polarization lasers. The ripple orientation is slanted clockwise or anticlockwise depending on the laser helicity but always display a maximum angle of 45°. Theoretical analyses indicate that no circular polarization is achieved for femtosecond lasers passing through quarter waveplate, and the induced ripple orientation is determined by the major axis of the polarization ellipse. The simulation results agree well with the experimental observations.

© 2012 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.5430) Physical optics : Polarization
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Laser Microfabrication

Original Manuscript: September 4, 2012
Revised Manuscript: October 18, 2012
Manuscript Accepted: October 24, 2012
Published: November 1, 2012

Yanfu Tang, Jianjun Yang, Bo Zhao, Mingwei Wang, and Xiaonong Zhu, "Control of periodic ripples growth on metals by femtosecond laser ellipticity," Opt. Express 20, 25826-25833 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys.36(11), 3688–3689 (1965). [CrossRef]
  2. T. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys.108(7), 073523 (2010). [CrossRef]
  3. Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett.97(14), 141101 (2010). [CrossRef]
  4. A. J. Huis in’t Veld, and J. van de Veer, “Initiation of femtosecond laser machined ripples in steel observed by scanning helium ion microscopy (SHIM),” in Proceeding on Laser Precision Microfabrication (LPM), Japan (2009).
  5. J. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys.111(2), 024902 (2012). [CrossRef]
  6. J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys.97(1), 013538 (2005). [CrossRef]
  7. G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express16(20), 16265–16271 (2008). [CrossRef] [PubMed]
  8. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci.197-198, 891–895 (2002). [CrossRef]
  9. A. Borowiec and H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003). [CrossRef]
  10. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005). [CrossRef]
  11. J. Bonse and J. Krüger, J. “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” Appl. Phys. (Berl.)108, 034903 (2010).
  12. T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett.90(15), 153115 (2007). [CrossRef]
  13. L. Xue, J. Yang, Y. Yang, Y. Wang, and X. Zhu, “Creation of periodic subwavelength ripples on tungsten surface by ultrashort laser pulses,” Appl. Phys. A (to be published). http://www.springerlink.com/content/h521l75956w57186/ .
  14. P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett.40(9), 824–826 (1982). [CrossRef]
  15. G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, and J. Fujita, “Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water,” Opt. Express20(14), 14848–14856 (2012). [CrossRef] [PubMed]
  16. R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express13(17), 6651–6656 (2005). [CrossRef] [PubMed]
  17. M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009). [CrossRef]
  18. J. Wang and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys.100(2), 023511 (2006). [CrossRef]
  19. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B27(2), 1155–1172 (1983). [CrossRef]
  20. S. E. Clark and D. C. Emmony, “Ultraviolet-laser-induced periodic surface structures,” Phys. Rev. B Condens. Matter40(4), 2031–2041 (1989). [CrossRef] [PubMed]
  21. F. Keilmann and Y. H. Bai, “Periodic surface structures frozen into CO2 laser-melted quartz,” Appl. Surf. Sci.253, 7932–7936 (2007).
  22. J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process.92(4), 1019–1024 (2008). [CrossRef]
  23. Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett.84(1), 10–12 (2004). [CrossRef]
  24. J. Zhong, G. Guo, J. Yang, N. Ma, G. Ye, X. Guo, R. Li, and H. Ma, “Femtosecond pulse laser-induced self-organized nanostructures on the surface of ZnO crystal,” Chin. Phys. B17(4), 1223–1226 (2008). [CrossRef]
  25. H. Ma, Y. Guo, M. Zhong, and R. Li, “Femtosecond pulse laser-induced self-organized nanogratings on the surface of a ZnSe crystal,” Appl. Phys., A Mater. Sci. Process.89(3), 707–709 (2007). [CrossRef]
  26. Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett.32(13), 1932–1934 (2007). [CrossRef] [PubMed]
  27. J. Wang and C. Guo, “Permanent recording of light helicity on optically inactive metal surfaces,” Opt. Lett.31(24), 3641–3643 (2006). [CrossRef] [PubMed]
  28. J. Yang, R. Wang, W. Liu, Y. Sun, and X. Zhu, “Investigation of microstructuring CuInGaSe2 thin films with ultrashort laser pulses,” J. Phys. D42(21), 215305 (2009). [CrossRef]
  29. M. Emam-Ismail, “Retardation calculation for achromatic and apochromatic quarter and half wave plates of gypsum based birefringent crystal,” Opt. Commun.283(22), 4536–4540 (2010). [CrossRef]
  30. J. K. Chen, J. E. Beraun, L. E. Grimes, and D. Y. Tzou, “Modeling of femtosecond laser-induced non-equilibrium deformation in metal films,” Int. J. Solids Struct.39(12), 3199–3216 (2002). [CrossRef]
  31. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge, 1999).
  32. A. M. Bonch-Bruevich, M. N. Libenson, V. S. Makin, and V. V. Trubaev, “Surface electromagnetic waves in optics,” Opt. Eng.31(4), 718–730 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited