OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 26089–26098

Investigation of the distribution of laser damage precursors at 1064 nm, 12 ns on Niobia-Silica and Zirconia-Silica mixtures

X. Fu, A. Melnikaitis, L. Gallais, S. Kiáčas, R. Drazdys, V. Sirutkaitis, and M. Commandré  »View Author Affiliations

Optics Express, Vol. 20, Issue 23, pp. 26089-26098 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1155 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Simple Nb2O5, ZrO2, SiO2 oxide coatings and their mixtures with SiO2 have been prepared by the Ion Beam Sputtering (IBS) technique. The Laser-Induced Damage of these samples has been studied at 1064 nm, 12 ns. The laser induced damage threshold (LIDT) decreases in both sets of the mixtures with the volumetric fraction of high index material. We find that the nanosecond LIDT of the mixtures is related to the band gap of the material as it has been widely observed in the subpicosecond regime. The laser damage probability curves have been fitted firstly by a statistical approach, i.e. direct calculation of damage precursor density from damage probability and secondly by a thermal model based on absorption of initiator. The distributions of damage precursors versus fluence extracted from these fittings show a good agreement. The thermal model makes it possible to connect damage probability to precursor physical properties. A metallic defect with a maximum radius of 18 nm was proposed to the interpretation. The critical temperature in the laser damage process exhibited a dependence on the band-gap of the material.

© 2012 OSA

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(310.0310) Thin films : Thin films

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 20, 2012
Revised Manuscript: August 24, 2012
Manuscript Accepted: August 28, 2012
Published: November 2, 2012

X. Fu, A. Melnikaitis, L. Gallais, S. Kiáčas, R. Drazdys, V. Sirutkaitis, and M. Commandré, "Investigation of the distribution of laser damage precursors at 1064 nm, 12 ns on Niobia-Silica and Zirconia-Silica mixtures," Opt. Express 20, 26089-26098 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Macleod, Thin-Film Optical Filters, 4th ed. (CRC Press, USA, 2010).
  2. S. Chao, W. H. Wang, and C. C. Lee, “Low-loss dielectric mirror with ion-beam-sputtered TiO2-SiO2 mixed films,” Appl. Opt.40(13), 2177–2182 (2001). [CrossRef] [PubMed]
  3. B. J. Pond, J. I. Debar, C. K. Carniglia, and T. Raj, “Stress reduction in ion beam sputtered mixed oxide films,” Appl. Opt.28(14), 2800–2805 (1989). [CrossRef] [PubMed]
  4. S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser irradiation,” J. Appl. Phys.92(10), 5720–5728 (2002). [CrossRef]
  5. M. D. Feit, A. M. Rubenchik, and M. Runkel, “Analysis of bulk DKDP damage distribution, obscuration, and pulse-length dependence,” Proc. SPIE4347, 383–388 (2001). [CrossRef]
  6. M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films358(1-2), 250–258 (2000). [CrossRef]
  7. D. W. Zhang, Y. S. Huang, Z. J. Ni, S. L. Zhuang, J. D. Shao, and Z. X. Fan, “Preparation of high laser induced damage threshold antireflection film using interrupted ion assisted deposition,” Opt. Express15(17), 10753–10760 (2007). [CrossRef] [PubMed]
  8. T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2).,” Opt. Express20(10), 11561–11573 (2012). [CrossRef] [PubMed]
  9. D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett.93(26), 261903 (2008). [CrossRef]
  10. M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express17(15), 12269–12278 (2009). [CrossRef] [PubMed]
  11. A. Melninkaitis, T. Tolenis, L. Mažulė, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kičas, and R. Drazdys, “Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering,” Appl. Opt.50(9), C188–C196 (2011). [CrossRef] [PubMed]
  12. M. Mende, L. Jensen, H. Ehlers, W. Riggers, H. Blaschke, and D. Ristau, “Laser-induced damage of pure and mixture material high reflectors for 355nm and 1064nm wavelength,” Proc. SPIE8168, 816821, 816821-11 (2011). [CrossRef]
  13. J. Capoulade, L. Gallais, J.-Y. Natoli, and M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt.47(29), 5272–5280 (2008). [CrossRef] [PubMed]
  14. L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007). [CrossRef] [PubMed]
  15. L. Jensen, S. Schrameyer, M. Jupé, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE7504, 75041E, 75041E-8 (2009). [CrossRef]
  16. M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE5273, 74–82 (2004). [CrossRef]
  17. L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys.104(5), 053120 (2008). [CrossRef]
  18. R. H. Picard, D. Milam, and R. A. Bradbury, “Statistical analysis of defect-caused laser damage in thin films,” Appl. Opt.16(6), 1563–1571 (1977). [CrossRef] [PubMed]
  19. J. O. Porteus and S. C. Seitel, “Absolute onset of optical surface damage using distributed defect ensembles,” Appl. Opt.23(21), 3796–3805 (1984). [CrossRef] [PubMed]
  20. J. H. Weaver, D. W. Lynch, and C. G. Olson, “Optical properties of niobium from 0.1 to 36.4 eV,” Phys. Rev. B7(10), 4311–4318 (1973). [CrossRef]
  21. D. R. Lide, Handbook of Chemistry and Physics, 87th ed. (CRC press, USA 2007).
  22. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited