OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26499–26510

Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter

Leimeng Zhuang, Muhammad Rezaul Khan, Willem Beeker, Arne Leinse, René Heideman, and Chris Roeloffzen  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 26499-26510 (2012)
http://dx.doi.org/10.1364/OE.20.026499


View Full Text Article

Enhanced HTML    Acrobat PDF (2444 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.

© 2012 OSA

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(130.3120) Integrated optics : Integrated optics devices
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Integrated Optics

History
Original Manuscript: August 1, 2012
Revised Manuscript: October 26, 2012
Manuscript Accepted: November 1, 2012
Published: November 9, 2012

Citation
Leimeng Zhuang, Muhammad Rezaul Khan, Willem Beeker, Arne Leinse, René Heideman, and Chris Roeloffzen, "Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter," Opt. Express 20, 26499-26510 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-26499


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007). [CrossRef]
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009). [CrossRef]
  3. F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express 16(20), 15880–15886 (2008). [CrossRef] [PubMed]
  4. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(29) (2010).
  5. A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, D. A. I. Leimeng Zhuang, M. J. Marpaung, M. Bentum, J. Burla, P. Verpoorte, A. Jorna, Hulzinga, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part I: design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010). [CrossRef]
  6. L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part II: experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010). [CrossRef]
  7. D. A. I. Marpaung, C. G. H. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18(26), 27359–27370 (2010). [CrossRef] [PubMed]
  8. D. A. I. Marpaung, L. Chevalier, M. Burla, and C. G. H. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express 19(25), 24838–24848 (2011). [CrossRef] [PubMed]
  9. M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19(22), 21475–21484 (2011). [CrossRef] [PubMed]
  10. S. L. Hahn, Transforms and Applications Handbook (CRC Press, 2010).
  11. R. Ashrafi and J. Azaña, “Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings,” Opt. Lett. 37(13), 2604–2606 (2012). [CrossRef] [PubMed]
  12. M. H. Asghari and J. Azaña, “All-optical hilbert transformer based on a single phase-shifted fiber bragg grating: design and analysis,” Opt. Lett. 34(3), 334–336 (2009). [CrossRef] [PubMed]
  13. M. Li and J. Yao, “All-fiber temporal photonic fractional hilbert transformer based on a directly designed fiber bragg grating,” Opt. Lett. 35(2), 223–225 (2010). [CrossRef] [PubMed]
  14. M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber bragg grating,” Photon. Technol. Letters 22(21), 1559–1561 (2010). [CrossRef]
  15. H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Wideband RF photonic in-phase and quadrature-phase generation,” Opt. Lett. 33(2), 98–100 (2008). [CrossRef] [PubMed]
  16. Z. Li, Y. Han, H. Chi, X. Zhang, and J. Yao, “A continously tunable microwave fractional hilbert transformer based on a nonuniformly spaced photonic microwave delay-line filter,” J. Lightwave Technol. 30(12), 1948–1953 (2012).
  17. T. X. H. Huang, X. Yi, and R. A. Minasian, “Microwave photonic quadrature filter based on an all-optical programmable Hilbert transformer,” Opt. Lett. 36(22), 4440–4442 (2011). [CrossRef] [PubMed]
  18. N. Q. Ngo, Y. Song, and B. Lin, “Design of Hilbert transformers with tunable THz bandwidths using a reconfigurable integrated optical FIR filter,” Opt. Commun. 284(3), 787–794 (2011). [CrossRef]
  19. A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, “Fractional Hilbert transform,” Opt. Lett. 21(4), 281–283 (1996). [CrossRef] [PubMed]
  20. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis (Wiley, 1999).
  21. M. Lang and T. I. Laakso, “Simple and robust method for the design of allpass filters using least squares phase error criterion,” IEEE Trans. Circuits Syst. II 41(1), 40–48 (1994). [CrossRef]
  22. R. G. Heideman, A. Leinse, W. Hoving, R. Dekker, D. Geuzebroek, E. Klein, R. Stoffer, C. G. H. Roeloffzen, L. Zhuang, and A. Meijerink, “Large-scale integrated optics using TriPleX waveguide technology:from UV to IR,” Proc. SPIE 7221, 72210R, 72210R-15 (2009). [CrossRef]
  23. L. Zhuang, D. A. I. Marpaung, M. Burla, W. P. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19(23), 23162–23170 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited