OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26618–26623

Effective Bragg conditions in a one-dimensional quasicrystal

W. J. Hsueh, C. H. Chang, Y. H. Cheng, and S. J. Wun  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 26618-26623 (2012)
http://dx.doi.org/10.1364/OE.20.026618


View Full Text Article

Enhanced HTML    Acrobat PDF (1116 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present occurrence of the effective Bragg conditions with wide gapwidth and high reflectance in a Fibonacci superlattice, which is a typical one-dimensional quasicrystal. In the Fibonacci material, the number of effective Bragg conditions is two rather than one which appears in traditional periodic structures. Based on the effective Bragg conditions, this study proposes existence of omnidirectional, wideband and high reflectance in the quasiperiodic materials analogous to that in traditional materials.

© 2012 OSA

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(310.6860) Thin films : Thin films, optical properties
(160.5293) Materials : Photonic bandgap materials

ToC Category:
Thin Films

History
Original Manuscript: August 15, 2012
Revised Manuscript: October 25, 2012
Manuscript Accepted: November 6, 2012
Published: November 12, 2012

Citation
W. J. Hsueh, C. H. Chang, Y. H. Cheng, and S. J. Wun, "Effective Bragg conditions in a one-dimensional quasicrystal," Opt. Express 20, 26618-26623 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-26618


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984). [CrossRef]
  2. D. Levine and P. J. Steinhardt, “Quasicrystals: A new class of ordered structures,” Phys. Rev. Lett. 53(26), 2477–2480 (1984). [CrossRef]
  3. E. Abe, Y. Yan, and S. J. Pennycook, “Quasicrystals as cluster aggregates,” Nat. Mater. 3(11), 759–767 (2004). [CrossRef] [PubMed]
  4. J. Mikhael, J. Roth, L. Helden, and C. Bechinger, “Archimedean-like tiling on decagonal quasicrystalline surfaces,” Nature 454(7203), 501–504 (2008). [CrossRef] [PubMed]
  5. K. Ueda, T. Dotera, and T. Gemma, “Photonic band structure calculations of two-dimensional Archimedean tiling patterns,” Phys. Rev. B 75(19), 195122 (2007). [CrossRef]
  6. G. J. Parker, M. E. Zoorob, M. D. B. Charlton, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404(6779), 740–743 (2000). [CrossRef] [PubMed]
  7. M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: Quasiperiodic media,” Phys. Rev. Lett. 58(23), 2436–2438 (1987). [CrossRef] [PubMed]
  8. W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72(5), 633–636 (1994). [CrossRef] [PubMed]
  9. S. W. Wang, X. Chen, W. Lu, M. Li, and H. Wang, “Fractal independently tunable multichannel filters,” Appl. Phys. Lett. 90(21), 211113 (2007). [CrossRef]
  10. L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003). [CrossRef] [PubMed]
  11. W. J. Hsueh, S. J. Wun, and C. W. Tsao, “Branching features of photonic bandgaps in Fibonacci dielectric heterostructures,” Opt. Commun. 284(7), 1880–1886 (2011). [CrossRef]
  12. A. N. Poddubny and E. L. Ivchenko, “Photonic quasicrystalline and aperiodic structures,” Physica E 42(7), 1871–1895 (2010). [CrossRef]
  13. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109(5), 1492–1505 (1958). [CrossRef]
  14. S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53(22), 2169–2172 (1984). [CrossRef]
  15. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997). [CrossRef]
  16. Y. V. Shvyd’kol, S. Stoupin, A. Cunsolo, A. H. Said, and X. Huang, “High-reflectivity high-resolution X-ray crystal optics with diamonds,” Nat. Phys. 6, 196–199 (2010).
  17. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994). [CrossRef] [PubMed]
  18. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007). [CrossRef]
  19. Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature 441(7091), 325–328 (2006). [CrossRef] [PubMed]
  20. E. Yablonovitch, “Engineered omnidirectional external-reflectivity spectra from one-dimensional layered interference filters,” Opt. Lett. 23(21), 1648–1649 (1998). [CrossRef] [PubMed]
  21. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998). [CrossRef] [PubMed]
  22. R. G. DeCorby, H. T. Nguyen, P. K. Dwivedi, and T. J. Clement, “Planar omnidirectional reflectors in chalcogenide glass and polymer,” Opt. Express 13(16), 6228–6233 (2005). [CrossRef] [PubMed]
  23. W. J. Hsueh and S. J. Wun, “Simple expressions for the maximum omnidirectional bandgap of bilayer photonic crystals,” Opt. Lett. 36(9), 1581–1583 (2011). [CrossRef] [PubMed]
  24. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  25. P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: Imaging by flat lens using negative refraction,” Nature 426(6965), 404 (2003). [CrossRef] [PubMed]
  26. W. J. Hsueh, C. T. Chen, and C. H. Chen, “Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism,” Phys. Rev. A 78(1), 013836 (2008). [CrossRef]
  27. J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90(8), 083901 (2003). [CrossRef] [PubMed]
  28. N. M. Litchinitser, A. I. Maimistov, I. R. Gabitov, R. Z. Sagdeev, and V. M. Shalaev, “Metamaterials: electromagnetic enhancement at zero-index transition,” Opt. Lett. 33(20), 2350–2352 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited