OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26845–26851

Femtosecond third-order optical nonlinearity of an azobenzene-containing ionic liquid crystalline polymer

Fuli Zhao, Changshun Wang, Jinwen Zhang, and Yi Zeng  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 26845-26851 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (985 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The nonlinear optical properties of an azobenzene-containing ionic liquid crystalline polymer were investigated using single beam Z-scan and optical Kerr effect (OKE) techniques. The nonlinear refractive index of electronic origin (3.1×10−19 m2/W) and the nonlinear absorption coefficient (3.63×10−13 m/W) were determined with 800 nm femtosecond laser pulses at a repetition rate of 1 KHz. The corresponding one-photon and two-photon figures of merit are determined to be 6.05 and 0.94, respectively, at irradiance of 50 GW/cm2. The response time of the observed nonlinearities is estimated to be as fast as 300 fs. These experiment results demonstrate that the polymer is a promising candidate for applications in all-optical switching modulators and nonlinear photonic devices.

© 2012 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:
Nonlinear Optics

Original Manuscript: September 25, 2012
Revised Manuscript: October 29, 2012
Manuscript Accepted: October 31, 2012
Published: November 14, 2012

Fuli Zhao, Changshun Wang, Jinwen Zhang, and Yi Zeng, "Femtosecond third-order optical nonlinearity of an azobenzene-containing ionic liquid crystalline polymer," Opt. Express 20, 26845-26851 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Y. Chen, L. Kuang, E. H. Sargent, and Z. Y. Wang, “Ultrafast nonresonant third-order optical nonlinearity of fullerenecontaining polyurethane films at telecommunication wavelengths,” Appl. Phys. Lett.83(11), 2115–2117 (2003). [CrossRef]
  2. R. S. S. Kumar, S. V. Rao, L. Giribabu, and D. N. Rao, “Femtosecond and nanosecond nonlinear optical properties of alkyl phthalocyanines studied using Z-scan technique,” Chem. Phys. Lett.447(4-6), 274–278 (2007). [CrossRef]
  3. Z. Y. Zhao, T. Q. Jia, J. Lin, Z. G. Wang, and Z. R. Sun, “Femtosecond non-resonant optical nonlinearity of silver chloride nanocrystal doped niobic tellurite glass,” J. Phys. D Appl. Phys.42(4), 045107 (2009). [CrossRef]
  4. T. Y. Ning, P. Gao, W. L. Wang, H. Lu, W. Y. Fu, Y. L. Zhou, D. X. Zhang, X. D. Bai, E. Wang, and G. Z. Yang, “Nonlinear optical properties of composite films consisting of multi-armed CdS nanorods and ZnO,” Opt. Mater.31(6), 931–935 (2009). [CrossRef]
  5. Y. M. Chen, J. F. Zhang, Y. X. Wang, X. R. Zhang, K. Yang, C. Zhang, and Y. L. Song, “Third- and fifth-order nonlinearities of heterobimetallic cluster [WOS3Cu3(4-pic)6]·ClO4,” Mater. Chem. Phys.117(1), 66–69 (2009). [CrossRef]
  6. T. He, Y. Cheng, Y. Du, and Y. Mo, “Z-scan determination of third-order nonlinear optical nonlinearity of three azobenzenes doped polymer films,” Opt. Commun.275(1), 240–244 (2007). [CrossRef]
  7. L. Brzozowski and E. H. Sargent, “Azobenzenes for photonic network applications:Third-order nonlinear optical properties,” J. Mater. Sci. Mater. Electron.12(9), 483–489 (2001). [CrossRef]
  8. A. Y. G. Fuh, H. C. Lin, T. S. Mo, and C. H. Chen, “Nonlinear optical property of azo-dye doped liquid crystals determined by biphotonic Z-scan technique,” Opt. Express13(26), 10634–10641 (2005). [CrossRef] [PubMed]
  9. R. Rangel-Rojo, S. Yamada, H. Matsuda, and D. Yankelevich, “Large near-resonance third-order nonlinearity in an azobenzenefunctionalized polymer film,” Appl. Phys. Lett.72(9), 1021–1023 (1998). [CrossRef]
  10. T. C. He, L. Zhang, Y. F. Yin, Y. G. Cheng, L. Ding, and Y. J. Mo, “Resonant electronic nonlinearity and laser heating induced nonlinearity of chlorophosphonazo I,” Phys. Lett. A372(21), 3937–3940 (2008). [CrossRef]
  11. T. C. He, C. S. Wang, C. Z. Zhang, and G. Y. Lu, “Nonlinear optical properties of an azo-based dye irradiated by picosecond and nanosecond laser pulses,” Physica B406(3), 488–493 (2011). [CrossRef]
  12. B. Gu, W. Ji, P. S. Patil, and S. M. Dharmaprakash, “Ultrafast optical nonlinearities and figures of merit in acceptor-substituted 3,4,5-trimethoxy chalcone derivatives: Structure-property relationships,” J. Appl. Phys.103(10), 103511 (2008). [CrossRef]
  13. T. C. He and C. S. Wang, “The study on the nonlinear optical response of Sudan I,” Opt. Commun.281(15-16), 4121–4125 (2008). [CrossRef]
  14. S. F. Xiao, X. M. Lu, and Q. H. Lu, “Photosensitive liquid-crystalline supramolecules self-assembled from ionic liquid crystal and polyelectrolyte for laser-induced optical anisotropy,” Macromolecules40, 7944–7950 (2007). [CrossRef]
  15. T. C. He, C. S. Wang, J. W. Zhang, X. Q. Zhang, and X. M. Lu, “Nonlinear absorption in an azo-containing ion liquid crystal polymer in the different excitation regimes,” Synth. Met.160(17-18), 1896–1901 (2010). [CrossRef]
  16. X. Q. Zhang, C. S. Wang, X. Pan, S. F. Xiao, Y. Zeng, T. C. He, and X. M. Lu, “Nonlinear optical properties and photoinduced anisotropy of an azobenzene ionic liquid–crystalline polymer,” Opt. Commun.283(1), 146–150 (2010). [CrossRef]
  17. A. Agnesi and G. C. Reali, “Exploiting the Z-scan method for mode-locked laser design,” Opt. Lett.18(9), 717–719 (1993). [CrossRef] [PubMed]
  18. D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys.42(6), 065401 (2009). [CrossRef]
  19. R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun.231(1-6), 431–436 (2004). [CrossRef]
  20. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990). [CrossRef]
  21. A. A. Rodriguez-Rosales, O. G. Morales-Saavedra, C. J. Roman-Moreno, and R. Ortega-Martinez, “Variation of nonlinear refractive index in dye-doped liquid crystals by local and nonlocal mechanisms,” Opt. Mater.31(2), 350–360 (2008). [CrossRef]
  22. R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B78(3-4), 433–438 (2004). [CrossRef]
  23. N. Sugimoto, A. Koiwai, S. Hyodo, T. Hioki, and S. Noda, “Nonresonant third-order nonlinear optical susceptibility of CdS clusters encapsulated in zeolite A and X,” Appl. Phys. Lett.66(8), 923–925 (1995). [CrossRef]
  24. C. W. Chen, J. L. Tang, K. H. Chung, T. H. Wei, and T. H. Huang, “Negative nonlinear refraction obtained with ultrashort laser pulses,” Opt. Express15(11), 7006–7018 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited