OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26852–26867

Generalizing higher-order Bessel-Gauss beams: analytical description and demonstration

Damian N. Schimpf, Jan Schulte, William P. Putnam, and Franz X. Kärtner  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 26852-26867 (2012)
http://dx.doi.org/10.1364/OE.20.026852


View Full Text Article

Enhanced HTML    Acrobat PDF (2932 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a novel class of higher-order Bessel-Gauss beams in which the well-known Bessel-Gauss beam is the fundamental mode and the azimuthally symmetric Laguerre-Gaussian beams are special cases. We find these higher-order Bessel-Gauss beams by superimposing decentered Hermite-Gaussian beams. We show analytically and experimentally that these higher-order Bessel-Gauss beams resemble higher-order eigenmodes of optical resonators consisting of aspheric mirrors. This work is relevant for the many applications of Bessel-Gauss beams in particular the more recently proposed high-intensity Bessel-Gauss enhancement cavities for strong-field physics applications.

© 2012 OSA

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(140.3300) Lasers and laser optics : Laser beam shaping
(140.3410) Lasers and laser optics : Laser resonators

ToC Category:
Physical Optics

History
Original Manuscript: October 1, 2012
Revised Manuscript: November 4, 2012
Manuscript Accepted: November 7, 2012
Published: November 14, 2012

Citation
Damian N. Schimpf, Jan Schulte, William P. Putnam, and Franz X. Kärtner, "Generalizing higher-order Bessel-Gauss beams: analytical description and demonstration," Opt. Express 20, 26852-26867 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-26852


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. J. R. Sheppard and T. Wilson, “Gaussian-beam theory of lenses with annular aperture,” IEEE J. Microw. Opt. Acoust.2, 105–112 (1978). [CrossRef]
  2. F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun.64, 491– 495 (1987). [CrossRef]
  3. F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics4, 780–785 (2010). [CrossRef]
  4. T. A Planchon, L. Gao, D. E Milkie, M. W Davidson, J. A Galbraith, C. G Galbraith, and Eric Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8, 417–423 (2011). [CrossRef] [PubMed]
  5. M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photon. Rev.6, 607–621 (2012). [CrossRef]
  6. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature419, 145–147 (2002). [CrossRef] [PubMed]
  7. D. Li and K. Imasaki, “Vacuum laser-driven acceleration by two slits-truncated Bessel beams,” Appl. Phys. Lett.87, 091106 (2005). [CrossRef]
  8. J. C. Gutiérrez-Vega, R. Rodríguez-Masegosa, and S. Chávez-Cerda, “Bessel-Gauss resonator with spherical output mirror: geometrical- and wave-optics analysis,” J. Opt. Soc. Am. A20, 2113–2122 (2003). [CrossRef]
  9. A. N. Khilo, E. G. Katranji, and A. A. Ryzhevich, “Axicon-based Bessel resonator: analytical description and experiment,” J. Opt. Soc. Am. A18, 1986–1992 (2001). [CrossRef]
  10. B. Ma, F. Wu, W. Lu, and J. Pu, “Nanosecond zero-order pulsed Bessel beam generated from unstable resonator based on an axicon,” Opt. Laser Technol.42, 941–944 (2010). [CrossRef]
  11. W. P. Putnam, D. N. Schimpf, G. Abram, and F. X. Kärtner, “Bessel-Gauss beam enhancement cavities for high-intensity applications,” Opt. Express20, 24429–24443 (2012). [CrossRef]
  12. V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, and G. Spagnolo Schirripa, “Generalized Bessel-Gauss beams,” J. Mod. Opt.43(6), 1155–1166 (1996).
  13. R. Vasilyeu, A. Dudley, N. Khilo, and A. Forbes, “Generating superpositions of higherorder Bessel beams,” Opt. Express17, 23389–23395 (2009). [CrossRef]
  14. C. Palma, “Decentered Gaussian beams, ray bundles, and Bessel-Gauss beams,” Appl. Opt.36, 1116–1120 (1997). [CrossRef] [PubMed]
  15. A. R. Al-Rashed and B. E. A. Saleh, “Decentered Gaussian beams,” Appl. Opt.34, 6819–6825 (1995). [CrossRef] [PubMed]
  16. A. R. Al-Rashed, “Spatial and temporal modes of resonators with dispersive phase-conjugate mirrors,” PhD Thesis (1997).
  17. S. A. Collins, “Lens-System Diffraction Integral Written in Terms of Matrix Optics,” J. Opt. Soc. Am.60, 1168–1177 (1970). [CrossRef]
  18. G. Ryshik, Tables of Series, Products and Integrals (Verlag Harri Deutsch, 1981).
  19. H. F. Johnson, “An improved method for computing a discrete hankel transform,” Comp. Phys. Comm.43, 181–202 (1987). [CrossRef]
  20. L. Yu, M. Huang, M. Chen, W. Chen, W. Huang, and Z. Zhu, “Quasi-discrete Hankel transform,” Opt. Lett.23, 409–411 (1998). [CrossRef]
  21. M. Guizar-Sicairos and J. C. Gutiérrez-Vega, “Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields,” J. Opt. Soc. Am. A21, 53–58 (2004). [CrossRef]
  22. A. Fox and T. Li, “Computation of optical resonator modes by the method of resonance excitation,” IEEE J. Quantum Electron.4, 460–465 (1968). [CrossRef]
  23. A. E. Siegman, Lasers (University Science Books, 1986).
  24. O. Brzobohaty, T. Cizmar, and P. Zemanek, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express16, 12688–12700 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited