OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26906–26912

Dual-channel low-coherence interferometry and its application to quantitative phase imaging of fingerprints

Haniel Gabai and Natan T. Shaked  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 26906-26912 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1010 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce an off-axis, wide-field, low-coherence and dual-channel interferometric imaging system, which is based on a simple-to-align, common-path interferometer. The system requires no optical-path-difference matching between the interferometric arms in order to obtain interference with low-coherence light source, and is capable of achieving two channels of off-axis interference with high spatial frequency. The two 180°-phase-shifted interferograms are acquired simultaneously using a single digital camera, and processed into a single, noise-reduced and DC-suppressed interferogram. We demonstrate using the proposed system for phase imaging of fingerprint templates. Due to the fact that conventional phase unwrapping algorithms cannot handle the complex and deep surface topography imposed by fingerprint templates, we experimentally implemented two-wavelength phase unwrapping using a supercontinuum laser coupled to acousto-optical tunable filter, together functioning as a low-coherence tunable light source. From the unwrapped phase map, we produced high quality depth profiles of fingerprint templates.

© 2012 OSA

OCIS Codes
(090.2880) Holography : Holographic interferometry
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(100.4998) Image processing : Pattern recognition, optical security and encryption
(100.5088) Image processing : Phase unwrapping

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: August 20, 2012
Revised Manuscript: October 6, 2012
Manuscript Accepted: October 7, 2012
Published: November 14, 2012

Haniel Gabai and Natan T. Shaked, "Dual-channel low-coherence interferometry and its application to quantitative phase imaging of fingerprints," Opt. Express 20, 26906-26912 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Mertz, Introduction to Optical Microscopy (Roberts and Company Publishers, 2010), Chap.11.
  2. F. Montfort, F. Charrière, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A23(11), 2944–2953 (2006). [CrossRef] [PubMed]
  3. N. T. Shaked, L. L. Satterwhite, M. T. Rinehart, and A. Wax, “Quantitative analysis of biological cells using digital holographic microscopy,” in Holography, Research and Technologies, J. Rosen Ed., (InTech, 2011), 219–236.
  4. G. C. Brown and R. Pryputniewicz, “Holographic microscope for measuring displacements of vibrating microbeams using time-averaged, electro-optic holography,” Opt. Eng.37(5), 1398–1405 (1998). [CrossRef]
  5. E. Bonnotte, P. Delobelle, L. Bornier, B. Trolard, and G. Tribillon, “Two interferometric methods for mechanical characterization of thin films by bulging tests. Application to single crystal of silicon,” J. Mater. Res.12(09), 2234–2248 (1997). [CrossRef]
  6. L. Xu, X. Peng, J. Miao, and A. K. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt.40(28), 5046–5051 (2001). [CrossRef] [PubMed]
  7. P. Chavel, “Optical noise and temporal coherence,” J. Opt. Soc. Am.70(8), 935–943 (1980). [CrossRef]
  8. L. Martínez-León, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt.44(19), 3977–3984 (2005). [CrossRef] [PubMed]
  9. Z. Monemhaghdoust, F. Montfort, Y. Emery, C. Depeursinge, and C. Moser, “Dual wavelength full field imaging in low coherence digital holographic microscopy,” Opt. Express19(24), 24005–24022 (2011). [CrossRef] [PubMed]
  10. A. A. Maznev, T. F. Crimmins, and K. A. Nelson, “How to make femtosecond pulses overlap,” Opt. Lett.23(17), 1378–1380 (1998). [CrossRef] [PubMed]
  11. J. A. Ferrari and E. M. Frins, “Single element interferometer,” Opt. Commun.279(2), 235–239 (2007). [CrossRef]
  12. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt.42(34), 6953–6958 (2003). [CrossRef] [PubMed]
  13. J. A. Ferrari, E. M. Frins, D. Perciante, and A. Dubra, “Robust one-beam interferometer with phase-delay control,” Opt. Lett.24(18), 1272–1274 (1999). [CrossRef] [PubMed]
  14. Q. Weijuan, Y. Yingjie, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Opt. Lett.34(8), 1276–1278 (2009). [CrossRef] [PubMed]
  15. Z. Weizman, O. Vardi, and M. Binsztok, “Dermatoglyphic (fingerprint) patterns in celiac disease,” J. Pediatr. Gastroenterol. Nutr.10(4), 451–453 (1990). [CrossRef] [PubMed]
  16. T. J. David, A. B. Ajdukiewicz, and A. E. Read, “Fingerprint changes in coeliac disease,” BMJ4(5735), 594–596 (1970). [CrossRef] [PubMed]
  17. H. J. Weinreb, “Fingerprint patterns in Alzheimer’s disease,” Arch. Neurol.42(1), 50–54 (1985). [CrossRef] [PubMed]
  18. B. Seltzer and I. Sherwin, “Fingerprint pattern differences in early- and late-onset primary degenerative dementia,” Arch. Neurol.43(7), 665–668 (1986). [CrossRef] [PubMed]
  19. D. Matloni, D. Maio, A. K. Jain, and S. Parabhakar, Handbook of Fingerprint Recognition (Springer-Verlag, 2009), Chap. 1.
  20. H. Faulds, “On the skin-furrows of the hand,” Nature22(574), 605 (1880). [CrossRef]
  21. M. C. Potcoava and M. K. Kim, “Fingerprint biometry applications of digital holography and low-coherence interferography,” Appl. Opt.48(34), H9–H15 (2009). [CrossRef] [PubMed]
  22. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2pi ambiguity by multiwavelength digital holography,” Opt. Lett.28(13), 1141–1143 (2003). [CrossRef] [PubMed]
  23. T. Baumbach, E. Kolenovic, V. Kebbel, and W. Jüptner, “Improvement of accuracy in digital holography by use of multiple holograms,” Appl. Opt.45(24), 6077–6085 (2006). [CrossRef] [PubMed]
  24. X. Kang, “An effective method for reducing speckle noise in digital holography,” Chin. Opt. Lett.6(2), 100–103 (2008). [CrossRef]
  25. J. M. Huntley and H. Saldner, “Temporal phase-unwrapping algorithm for automated interferogram analysis,” Appl. Opt.32(17), 3047–3052 (1993). [CrossRef] [PubMed]
  26. N. Warnasooriya and M. K. Kim, “LED-based multi-wavelength phase imaging interference microscopy,” Opt. Express15(15), 9239–9247 (2007). [CrossRef] [PubMed]
  27. R. C. Jones, “A new calculus for the treatment of optical systems. I. Description and discussion of the calculus,” J. Opt. Soc. Am.31(7), 488–500 (1941). [CrossRef]
  28. P. Gaom, B. Yau, J. Min, R. Guom, J. Zheng, and T. Ye, “Parallel two-step phase shifting microscopic interferometry based on ac cube beamsplitter,” Opt. Commun.284, 4134–4140 (2011).
  29. N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett.34(6), 767–769 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited