OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26913–26921

Negative propagation effect in nonparaxial Airy beams

Pablo Vaveliuk and Oscar Martinez-Matos  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 26913-26921 (2012)
http://dx.doi.org/10.1364/OE.20.026913


View Full Text Article

Enhanced HTML    Acrobat PDF (1273 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Negative propagation is an unusual effect concerning the local sign change in the Poynting vector components of an optical beam under free propagation. We report this effect for finite-energy Airy beams in a subwavelength nonparaxial regime. This effect is due to a coupling process between propagating and evanescent plane waves forming the beam in the spectral domain and it is demonstrated for a single TE or TM mode. This is contrary to what happens for vector Bessel beams and vector X-waves, for which a complex superposition of TE and TM modes is mandatory. We also show that evanescent waves cannot contribute to the energy flux density by themselves such that a pure evanescent Airy beam is not physically realizable. The break of the shape-preserving and diffraction-free properties of Airy beams in a nonparaxial regime is exclusively caused by the propagating waves. The negative propagation effect in subwavelength nonparaxial Airy beams opens new capabilities in optical traps and tweezers, optical detection of invisibility cloacks and selective on-chip manipulation of nanoparticles.

© 2012 OSA

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(260.2110) Physical optics : Electromagnetic optics
(350.5500) Other areas of optics : Propagation

ToC Category:
Physical Optics

History
Original Manuscript: August 9, 2012
Revised Manuscript: October 17, 2012
Manuscript Accepted: October 19, 2012
Published: November 14, 2012

Citation
Pablo Vaveliuk and Oscar Martinez-Matos, "Negative propagation effect in nonparaxial Airy beams," Opt. Express 20, 26913-26921 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-26913


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys.47, 264 –267 (1979). [CrossRef]
  2. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett.32, 979–981 (2007). [CrossRef] [PubMed]
  3. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett.99, 213901 (2007). [CrossRef]
  4. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett.33, 207–209 (2008). [CrossRef] [PubMed]
  5. D. M. Cottrell, J. A. Davis, and T. M. Hazard, “Direct generation of accelerating Airy beams using a 3/2 phase-only pattern,” Opt. Lett.34, 2634–2636 (2009). [CrossRef] [PubMed]
  6. J. A. Davis, M. J. Mitry, M. A. Bandres, I. Ruiz, K. P. McAuley, and D. M. Cottrell, “Generation of accelerating Airy and accelerating parabolic beams using phase-only patterns,” Appl. Opt.48, 3170–3176 (2009). [CrossRef] [PubMed]
  7. M. A. Bandres and J. C. Gutierrez-Vega, “Airy-Gauss beams and their transformation by paraxial optical systems,” Opt. Express15, 16719–16728 (2007). [CrossRef] [PubMed]
  8. J. A. Davis, M. J. Mintry, M. A. Bandres, and D. M. Cottrell, “Observation of accelerating parabolic beams,” Opt. Express16, 12866–12871 (2008). [CrossRef] [PubMed]
  9. J. E. Morris, M. Mazilu, J. Baumgartl, T. Ciz̃már, and K. Dholakia, “Propagation characteristics of Airy beams: dependence upon spatial coherence and wavelength,” Opt. Express17, 13236–13245 (2009). [CrossRef] [PubMed]
  10. M. I. Carvalho and M. Facão, “Propagation of Airy-related beams,” Opt. Express18, 21938–21949 (2010). [CrossRef] [PubMed]
  11. P. Vaveliuk, G. F. Zebende, M. A. Moret, and B. Ruiz, “Propagating free-space nonparaxial beams,” J. Opt. Soc. Am. A24, 3297–3302 (2007). [CrossRef]
  12. A. V. Novitsky and D. V. Novitsky, “Nonparaxial Airy beams: role of evanescent waves,” Opt. Lett.34, 3430–3432 (2009). [CrossRef] [PubMed]
  13. I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting accelerating wave packets of Maxwell’s equations,” Phys. Rev. Lett.108, 163901 (2012). [CrossRef] [PubMed]
  14. Z. Chen, “Viewpoint: light bends itself into an arcs,” Phys.5, 44 (2012). [CrossRef]
  15. A. V. Novitsky and D. V. Novitsky, “Negative propagation of vector Bessel beams,” J. Opt. Soc. Am. A24, 2844–2849 (2007). [CrossRef]
  16. M. A. Salem and H. Bağci, “Energy flow characteristics of vector X-waves,” Opt. Express19, 8526–8532 (2011). [CrossRef] [PubMed]
  17. A. Salandrino and D. N. Christodoulides, “Airy plasmon: a nondiffracting surface wave,” Opt. Lett.35, 2082–2084 (2010). [CrossRef] [PubMed]
  18. A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Yu. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett.107, 116802 (2011). [CrossRef] [PubMed]
  19. L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett.107, 126804 (2011). [CrossRef] [PubMed]
  20. P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett.36, 3191–3193 (2011). [CrossRef] [PubMed]
  21. A. Salandrino and D. N. Christodoulides, “Viewpoint: Airy plasmons defeat diffraction on the surface,” Phys.4, 69 (2011). [CrossRef]
  22. T. Schneider, A. A. Serga, A. V. Chumak, C. W. Sandweg, S. Trudel, S. Wolff, M. P. Kostylev, V. S. Tiberkevich, A. N. Slavin, and B. Hillebrands, “Nondiffractive subwavelength wave beams in a medium with externally controlled anisotropy,” Phys. Rev. Lett.104, 197203 (2010). [CrossRef] [PubMed]
  23. W. Liu, D. N. Neshev, I. V. Shadrivov, A. E. Miroshnichenko, and Yu. S. Kivshar, “Plasmonic Airy beam manipulation in linear optical potentials,” Opt. Lett.36, 1164–1166 (2011). [CrossRef] [PubMed]
  24. J. W. Goodman, Introduction to Fourier Optics, (McGraw-Hill, New York, 1968).
  25. I. M. Besieris and A. M. Shaarawi, “A note on an accelerating finite energy Airy beam,” Opt. Lett.32, 2447–2449 (2007). [CrossRef] [PubMed]
  26. A. Lencina and P. Vaveliuk, “Squared-field amplitude modulus and radiation intensity nonequivalence within nonlinear slabs,” Phys. Rev. E71, 056614 (2005). [CrossRef]
  27. P. Vaveliuk, B. Ruiz, and A. Lencina, “Limits of the paraxial aproximation in laser beams,” Opt. Lett.32, 927–929 (2007). [CrossRef] [PubMed]
  28. P. Vaveliuk and O. Martinez-Matos, “Physical interpretation of the paraxial estimator,” Opt. Commun.285, 4816–4820 (2012). [CrossRef]
  29. P. Vaveliuk, “Quantifying the paraxiality for laser beams from the M2-factor,” Opt. Lett.34, 340–342 (2009). [CrossRef] [PubMed]
  30. P. Vaveliuk and O. Martinez-Matos, “Effect of ABCD transformations on beam paraxiality,” Opt. Express19, 25944–25953 (2011). [CrossRef]
  31. Z. Zheng, B.-F. Zhang, H. Chen, J. Ding, and H.-T. Wang, “Optical trapping with focused Airy beams,” Appl. Opt.50, 43–49 (2011). [CrossRef] [PubMed]
  32. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nature Phys.3, 477–480 (2007). [CrossRef]
  33. B. Zhang and B.-I. Wu, “Electromagnetic detection of a perfect invisibility cloak,” Phys. Rev. Lett.103, 243901 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited