OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26922–26928

Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing

W. Horn, S. Kroesen, J. Herrmann, J. Imbrock, and C. Denz  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 26922-26928 (2012)
http://dx.doi.org/10.1364/OE.20.026922


View Full Text Article

Enhanced HTML    Acrobat PDF (864 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the fabrication of femtosecond laser-induced, first-order waveguide Bragg gratings in lithium niobate in the low repetition rate regime. Type-II waveguides are written into an x-cut lithium niobate wafer and structured periodically to achieve narrowband reflections at wavelengths around 1550 nm. Additionally, electrodes are employed to allow for electro-optic tuning of the spectral response. We demonstrate wavelength control of the central reflection peak by applying a static external electric field. A maximum shift of the reflection peak of Δλ = 625 pm is observed.

© 2012 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(160.3730) Materials : Lithium niobate
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.1950) Optical devices : Diffraction gratings
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: August 16, 2012
Revised Manuscript: October 21, 2012
Manuscript Accepted: October 23, 2012
Published: November 14, 2012

Citation
W. Horn, S. Kroesen, J. Herrmann, J. Imbrock, and C. Denz, "Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing," Opt. Express 20, 26922-26928 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-26922


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A.-Pure Appl. Op.11, 013001 (2009). [CrossRef]
  2. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89, 081108 (2006). [CrossRef]
  3. M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93, 101111 (2008). [CrossRef]
  4. J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” phys. status solidi (a)208, 276–283 (2011). [CrossRef]
  5. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996). [CrossRef] [PubMed]
  6. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997). [CrossRef]
  7. H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-Cut lithium niobate,” IEEE Photon. Technol. Lett.19, 892–894 (2007). [CrossRef]
  8. A. H. Nejadmalayeri and P. R. Herman, “Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett.31, 2987–2989 (2006). [CrossRef] [PubMed]
  9. Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett.33, 2281–2283 (2008). [CrossRef] [PubMed]
  10. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express18, 19844–19859 (2010). [CrossRef] [PubMed]
  11. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett.31, 2690–2691 (2006). [CrossRef] [PubMed]
  12. H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, “Femtosecond laser direct writing of multiwavelength bragg grating waveguides in glass,” Opt. Lett.31, 3495–3497 (2006). [CrossRef] [PubMed]
  13. H. Zhang, S. M. Eaton, J. Li, A. H. Nejadmalayeri, and P. R. Herman, “Type II high-strength bragg grating waveguides photowritten with ultrashort laser pulses,” Opt. Express15, 4182–4191 (2007). [CrossRef] [PubMed]
  14. H. Zhang, S. M. Eaton, and P. R. Herman, “Single-step writing of bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett.32, 2559–2561 (2007). [CrossRef] [PubMed]
  15. G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, “Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating,” Opt. Lett.33, 956–958 (2008). [CrossRef] [PubMed]
  16. D. Grobnic, S. Mihailov, C. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.17, 1453–1455 (2005). [CrossRef]
  17. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A.89, 127–132 (2007). [CrossRef]
  18. J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A.86, 165–170 (2006). [CrossRef]
  19. V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004). [CrossRef]
  20. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci.253, 7899–7902 (2007). [CrossRef]
  21. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quant. Electron.16, 373–375 (1984). [CrossRef]
  22. M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express13, 5676–5681 (2005). [CrossRef] [PubMed]
  23. G. Brown, R. R. Thomson, A. K. Kar, N. D. Psaila, and H. T. Bookey, “Ultrafast laser inscription of bragg-grating waveguides using the multiscan technique,” Opt. Lett.37, 491–493 (2012). [CrossRef] [PubMed]
  24. N. Sanner, N. Huot, E. Audouard, C. Larat, J. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett.30, 1479–1481 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited