OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26935–26941

Broadband parametric frequency comb generation with a 1-μm pump source

Kasturi Saha, Yoshitomo Okawachi, Jacob S. Levy, Ryan K. W. Lau, Kevin Luke, Mark A. Foster, Michal Lipson, and Alexander L. Gaeta  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 26935-26941 (2012)
http://dx.doi.org/10.1364/OE.20.026935


View Full Text Article

Enhanced HTML    Acrobat PDF (1172 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the first experimental demonstration of broadband frequency comb generation from a single-frequency pump laser at 1-μm using parametric oscillation in a high-Q silicon-nitride ring resonator. The resonator dispersion is engineered to have a broad anomalous group velocity dispersion region near the pump wavelength for efficient parametric four-wave mixing. The comb spans 55 THz with a 230-GHz free spectral range. These results demonstrate the powerful advantage of dispersion engineering in chip-based devices for producing combs with a wide range of pump wavelengths.

© 2012 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

ToC Category:
Frequency Comb Generation

History
Original Manuscript: September 13, 2012
Revised Manuscript: October 18, 2012
Manuscript Accepted: November 1, 2012
Published: November 14, 2012

Citation
Kasturi Saha, Yoshitomo Okawachi, Jacob S. Levy, Ryan K. W. Lau, Kevin Luke, Mark A. Foster, Michal Lipson, and Alexander L. Gaeta, "Broadband parametric frequency comb generation with a 1-μm pump source," Opt. Express 20, 26935-26941 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-26935


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Th. Udem, R. Holzwart, and T. W. Hänsch, “Optical frequency metrology,” Nature416, 233–237 (2002). [CrossRef] [PubMed]
  2. S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science3, 825–828 (2001). [CrossRef]
  3. M. J. Thorpe and J. Ye, “Cavity enhanced direct frequency comb spctroscopy,” Appl. Phys. B91, 397–414 (2008). [CrossRef]
  4. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator based optical frequency combs,” Science332, 555–559 (2011). [CrossRef] [PubMed]
  5. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007). [CrossRef]
  6. I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett.45, 878–880 (2009). [CrossRef]
  7. I. H. Agha, Y. Okawachi, and A. L. Gaeta, “Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres,” Opt. Express17, 16209–16215 (2009). [CrossRef] [PubMed]
  8. D. Braje, L. Hollberg, and S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett.102, 193902 (2009).
  9. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4, 41–45 (2010). [CrossRef]
  10. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nature Photon.4, 37–40 (2010). [CrossRef]
  11. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photon.6, 369–373 (2012). [CrossRef]
  12. Scott B. Papp and Scott A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833 (2011). [CrossRef]
  13. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011). [CrossRef] [PubMed]
  14. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36, 3398–3400 (2011). [CrossRef] [PubMed]
  15. P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107, 063901 (2011). [CrossRef]
  16. I. S. Grudinin, L. Baumgartel, and N. Yu, “Frequency comb from a microresonator with engineered spectrum,” Opt. Express20, 6604–6609 (2012). [CrossRef] [PubMed]
  17. T. Herr, J. Riemensberger, C. Wang, K. Hartinger, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics of Kerr frequency comb formation in microresonators,” Nature Photon.6, 480–487 (2012). [CrossRef]
  18. S. B. Papp, P. Del’Haye, and S. A. Diddams,“Mechanical control of a microrod-resonator optical frequency comb,” arXiv:1205.4272v1.
  19. A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37, 43–45 (2012). [CrossRef] [PubMed]
  20. Y. K. Chembo and Nan Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A82, 033801 (2010). [CrossRef]
  21. A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011). [CrossRef] [PubMed]
  22. A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr frequency comb formation,” arXiv:1111.3922v1.
  23. A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012). [CrossRef]
  24. F. Quinlan, G. Ycas, S. Osterman, and S. A Diddams, “A 12.5 GHz-spaced optical frequency comb spanning ¿400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum.81, 063105 (2010). [CrossRef] [PubMed]
  25. A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Nature Photon.5, 293–296 (2011). [CrossRef]
  26. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-Infrared optical frequency combs based on crystalline microresonators,” arXiv:119.2716v1.
  27. J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineered high-Q silicon nitride ring-resonators via atomic layer deposition,” arXiv:1207.3841v1.
  28. A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100 GHz repetition rates,” Opt. Lett.37, 875–877 (2012). [CrossRef] [PubMed]
  29. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011). [CrossRef]
  30. F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20, 21033–21043 (2012). [CrossRef] [PubMed]
  31. J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” arXiv:1210.2994.
  32. K. Saha, Y. Okawachi, B. Shim, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “On-chip high repetition rate femtosecond source,” CTu3G.3, CLEO: Science and Innovations (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited