OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26986–26995

Encoding and decoding of orbital angular momentum for wireless optical interconnects on chip

Dengke Zhang, Xue Feng, and Yidong Huang  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 26986-26995 (2012)
http://dx.doi.org/10.1364/OE.20.026986


View Full Text Article

Enhanced HTML    Acrobat PDF (2047 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Beams carried orbital angular momentum (OAM) are proposed for wireless optical interconnects on chip and a full scheme of encoding and decoding of OAM at single frequency is demonstrated with numerical simulation. With proposed structure, beams with OAM order of −3 to 4 are generated and four orders of them (0 to 3) are used to encode and decode data so that the increased data density of two folds is achieved. According to such results, we believe that if OAM is utilized as an additional dimension in wireless optical interconnects, the data density can be significantly increased since the adopted orders of OAM could be infinite in principle. Moreover, such improvement could be easily applied to the existing architecture without any more complex technology.

© 2012 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(130.3120) Integrated optics : Integrated optics devices
(130.4110) Integrated optics : Modulators

ToC Category:
Integrated Optics

History
Original Manuscript: August 10, 2012
Revised Manuscript: October 19, 2012
Manuscript Accepted: November 9, 2012
Published: November 15, 2012

Citation
Dengke Zhang, Xue Feng, and Yidong Huang, "Encoding and decoding of orbital angular momentum for wireless optical interconnects on chip," Opt. Express 20, 26986-26995 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-26986


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  2. M. Padgett, J. Courtial, and L. Allen, “Light's orbital angular momentum,” Phys. Today57(5), 35–40 (2004). [CrossRef]
  3. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3(5), 305–310 (2007). [CrossRef]
  4. L. Allen and M. J. Padgett, “The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun.184(1-4), 67–71 (2000). [CrossRef]
  5. S. M. Barnett, “Optical angular-momentum flux,” J. Opt. B Quantum Semiclassical Opt.4(2), S7–S16 (2002). [CrossRef]
  6. N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt.43(12), 2485–2491 (1996). [CrossRef]
  7. H. He, M. E. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995). [CrossRef] [PubMed]
  8. K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett.21(11), 827–829 (1996). [CrossRef] [PubMed]
  9. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express13(3), 689–694 (2005). [CrossRef] [PubMed]
  10. J. Lobera and J. Coupland, “Contrast enhancing techniques in digital holographic microscopy,” Meas. Sci. Technol.19(2), 025501 (2008). [CrossRef]
  11. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001). [CrossRef] [PubMed]
  12. B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett.99(8), 087701 (2007). [CrossRef] [PubMed]
  13. Z. Bouchal and R. Celechovský, “Mixed vortex states of light as information carriers,” New J. Phys.6, 131 (2004). [CrossRef]
  14. J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett.88(25), 257901 (2002). [CrossRef] [PubMed]
  15. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express12(22), 5448–5456 (2004). [CrossRef] [PubMed]
  16. R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” New J. Phys.9(9), 328 (2007). [CrossRef]
  17. F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys.14(3), 033001 (2012). [CrossRef]
  18. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics6(7), 488–496 (2012). [CrossRef]
  19. R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE96(2), 230–247 (2008). [CrossRef]
  20. S. Richard, “The Achievements and Challenges of Silicon Photonics,” Adv. Opt. Technol.2008, 472305 (2008).
  21. L. Tsybeskov, D. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE97(7), 1161–1165 (2009). [CrossRef]
  22. M. Paniccia, “Integrating silicon photonics,” Nat. Photonics4(8), 498–499 (2010). [CrossRef]
  23. A. Alù and N. Engheta, “Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas,” Phys. Rev. Lett.104(21), 213902 (2010). [CrossRef] [PubMed]
  24. S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag.58(2), 565–572 (2010). [CrossRef]
  25. Y. F. Yu, Y. H. Fu, X. M. Zhang, A. Q. Liu, T. Bourouina, T. Mei, Z. X. Shen, and D. P. Tsai, “Pure angular momentum generator using a ring resonator,” Opt. Express18(21), 21651–21662 (2010). [CrossRef] [PubMed]
  26. N. K. Fontaine, C. R. Doerr, and L. Buhl, “Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits,” in Optical Fiber Communication Conference, California, USA, March 4, 2012.
  27. D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun2, 267 (2011). [CrossRef] [PubMed]
  28. N. K. Fontaine, C. R. Doerr, M. A. Mestre, R. Ryf, P. Winzer, L. Buhl, Y. Sun, X. Jiang, and R. Lingle, “Space-division multiplexing and all-optical MIMO demultiplexing using a photonic integrated circuit,” in Optical Fiber Communication Conference, California, USA, March 4, 2012.
  29. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  30. G. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010). [CrossRef]
  31. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett.26(2), 87–88 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPG (453 KB)      QuickTime
» Media 2: MPG (452 KB)      QuickTime
» Media 3: MPG (452 KB)      QuickTime
» Media 4: MPG (452 KB)      QuickTime
» Media 5: MPG (452 KB)      QuickTime
» Media 6: MPG (452 KB)      QuickTime
» Media 7: MPG (452 KB)      QuickTime
» Media 8: MPG (452 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited