OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 27045–27050

Sideband-controllable mode-locking fiber laser based on chirped fiber Bragg gratings

Dongdong Han and Xueming Liu  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 27045-27050 (2012)
http://dx.doi.org/10.1364/OE.20.027045


View Full Text Article

Enhanced HTML    Acrobat PDF (1008 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have proposed a sideband-controllable fiber soliton laser by means of chirped fiber Bragg gratings (CFBGs). Each side of the spectral sidebands of laser could be removed by using a CFBG with proper dispersion. Numerical simulations have well reproduced the experimental observations. The numerical and experimental investigations show that the generation of the unilateral sidebands is attributed to the CFBG-induced spectral filtering effect. Our work provides an effective way to manage conventional solitons with spectral sidebands.

© 2012 OSA

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.3500) Lasers and laser optics : Lasers, erbium
(140.3510) Lasers and laser optics : Lasers, fiber

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 22, 2012
Revised Manuscript: November 7, 2012
Manuscript Accepted: November 9, 2012
Published: November 15, 2012

Citation
Dongdong Han and Xueming Liu, "Sideband-controllable mode-locking fiber laser based on chirped fiber Bragg gratings," Opt. Express 20, 27045-27050 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-27045


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Liu, “Interaction and motion of solitons in passively-mode-locked fiber lasers,” Phys. Rev. A84(5), 053828 (2011). [CrossRef]
  2. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012). [CrossRef]
  3. D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett.8(2), 134–138 (2011). [CrossRef]
  4. L. R. Wang, X. M. Liu, Y. K. Gong, D. Mao, and H. Feng, “Ultra-broadband high-energy pulse generation and evolution in a compact erbium-doped all-fiber laser,” Laser Phys. Lett.8(5), 376–381 (2011). [CrossRef]
  5. X. Liu, “Dissipative soliton evolution in ultra-large normal-cavity-dispersion fiber lasers,” Opt. Express17(12), 9549–9557 (2009). [CrossRef] [PubMed]
  6. Y. Deng, M. Koch, F. Lu, G. Wicks, and W. Knox, “Colliding-pulse passive harmonic mode-locking in a femtosecond Yb-doped fiber laser with a semiconductor saturable absorber,” Opt. Express12(16), 3872–3877 (2004). [CrossRef] [PubMed]
  7. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008). [CrossRef] [PubMed]
  8. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express17(20), 17630–17635 (2009). [CrossRef] [PubMed]
  9. L. Yun and X. Liu, “Generation and Propagation of Bound-State Pulses in a Passively Mode-Locked Figure-Eight Laser,” IEEE Photon. J.4(2), 512–519 (2012). [CrossRef]
  10. X. Liu, “Mechanism of high-energy pulse generation without wave breaking in mode-locked fiber lasers,” Phys. Rev. A82(5), 053808 (2010). [CrossRef]
  11. L. R. Wang, X. M. Liu, and Y. K. Gong, “Giant-chirp oscillator for ultra-large net-normal-dispersion fiber lasers,” Laser Phys. Lett.7(1), 63–67 (2010). [CrossRef]
  12. X. Liu, “Soliton formation and evolution in passively-mode-locked lasers with ultralong anomalous-dispersion fibers,” Phys. Rev. A84(2), 023835 (2011). [CrossRef]
  13. K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett.18(3), 220–222 (1993). [CrossRef] [PubMed]
  14. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett.92(21), 213902 (2004). [CrossRef] [PubMed]
  15. X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A81(2), 023811 (2010). [CrossRef]
  16. X. Liu, “Dynamic evolution of temporal dissipative-soliton molecules in large normal path-averaged dispersion fiber lasers,” Phys. Rev. A82(6), 063834 (2010). [CrossRef]
  17. G. P. Agrawal, “Applications of Nonlinear Fiber Optics,” Fourth ed., (Academic Press, Boston, 2007).
  18. M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber laser,” IEEE J. Quantum Electron.30(6), 1469–1477 (1994). [CrossRef]
  19. D. U. Noske and J. R. Taylor, “Spectral and temporal stabilization of a diode-pumped ytterbium-erbium fiber soliton laser,” Electron. Lett.29(25), 2200–2201 (1993). [CrossRef]
  20. Z. Luo, A. Luo, W. Xu, C. Song, Y. Gao, and W. Chen, “Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Laser Phys. Lett.6(8), 582–585 (2009). [CrossRef]
  21. O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun.269(1), 156–165 (2007). [CrossRef]
  22. X. Liu, “Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity,” Opt. Express17(25), 22401–22416 (2009). [CrossRef] [PubMed]
  23. X. Liu and B. Lee, “A fast method for nonlinear Schrödinger equation,” IEEE Photon. Technol. Lett.15(11), 1549–1551 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited