OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 27094–27101

Differential measurement scheme for Brillouin Optical Correlation Domain Analysis

Ji Ho Jeong, Kwanil Lee, Kwang Yong Song, Je-Myung Jeong, and Sang Bae Lee  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 27094-27101 (2012)
http://dx.doi.org/10.1364/OE.20.027094


View Full Text Article

Acrobat PDF (2119 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We newly propose and experimentally demonstrate a differential measurement scheme for Brillouin optical correlation domain analysis, where the difference between Brillouin gain spectra constructed by a normal and a phase-modulated Brillouin pump waves are analyzed to measure local Brillouin frequencies in optical fibers. In experiments, a five-fold enhancement in the spatial resolution is obtained compared to an ordinary BOCDA system under the same modulation parameters, as a result of the improved dynamic range by the suppression of background noises.

© 2012 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 24, 2012
Revised Manuscript: November 7, 2012
Manuscript Accepted: November 9, 2012
Published: November 16, 2012

Citation
Ji Ho Jeong, Kwanil Lee, Kwang Yong Song, Je-Myung Jeong, and Sang Bae Lee, "Differential measurement scheme for Brillouin Optical Correlation Domain Analysis," Opt. Express 20, 27094-27101 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-27094


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. X. Bao, D. J. Webb, and D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett.18(18), 1561–1563 (1993). [CrossRef] [PubMed]
  2. M. Nikles, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997). [CrossRef]
  3. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B22(6), 1321–1324 (2005). [CrossRef]
  4. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron.E83-C, 405–412 (2000).
  5. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett.31(17), 2526–2528 (2006). [CrossRef] [PubMed]
  6. K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett.19(23), 1928–1930 (2007). [CrossRef]
  7. K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett.36(11), 2062–2064 (2011). [CrossRef] [PubMed]
  8. K. Y. Song, Z. He, and K. Hotate, “Optimization of Brillouin optical correlation domain analysis system based on intensity modulation scheme,” Opt. Express14(10), 4256–4263 (2006). [CrossRef] [PubMed]
  9. K. Y. Song, Z. He, and K. Hotate, “Effects of intensity modulation of light source on Brillouin optical correlation domain analysis,” J. Lightwave Technol.25(5), 1238–1246 (2007). [CrossRef]
  10. J. H. Jeong, K. Lee, K. Y. Song, J.-M. Jeong, and S. B. Lee, “Variable-frequency lock-in detection for the suppression of beat noise in Brillouin optical correlation domain analysis,” Opt. Express19(19), 18721–18728 (2011). [CrossRef] [PubMed]
  11. K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett.18(24), 2653–2655 (2006). [CrossRef]
  12. K. Hotate and H. Arai, “Enlargement of measurement range of simplified BOCDA fiber-optic distributed strain sensing system using a temporal gating scheme,” Proc. SPIE5855, 184–187 (2005). [CrossRef]
  13. K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photon. Technol. Lett.18(3), 499–501 (2006). [CrossRef]
  14. J. H. Jeong, K. Lee, K. Y. Song, J.-M. Jeong, and S. B. Lee, “Bidirectional measurement for Brillouin optical correlation domain analysis,” Opt. Express20(10), 11091–11096 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited