OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 27369–27375

Shock wave far-field in ordered and disordered nonlocal media

S. Gentilini, N. Ghofraniha, E. DelRe, and C. Conti  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 27369-27375 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2470 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the far field of a spatial dispersive shock wave generated from a Gaussian beam propagating in nonlinear nonlocal colloidal disordered media. The interplay between nonlinearity and structural randomness is quantified in terms of the threshold power for the occurrence of the shock wave.

© 2012 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter

ToC Category:

Original Manuscript: September 4, 2012
Revised Manuscript: October 16, 2012
Manuscript Accepted: October 17, 2012
Published: November 19, 2012

Virtual Issues
Nonlinear Photonics (2012) Optics Express

S. Gentilini, N. Ghofraniha, E. DelRe, and C. Conti, "Shock wave far-field in ordered and disordered nonlocal media," Opt. Express 20, 27369-27375 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Sun, J. Schu, C. Barsi, S. Rica, A. Picozzi, and J. W. Fleischer, “Observation of the kinetic condensation of classical waves,” Nat. Phys.8, 471–475 (2012). [CrossRef]
  2. W. Wan, S. Jia, and J. W. Fleischer, “Dispersive superfluid-like shock waves in nonlinear optics,” Nat. Phys.3, 46–51 (2007). [CrossRef]
  3. C. Conti and L. Leuzzi, “Complexity of waves in nonlinear disordered media,” Phys. Rev. B83, 134204 (2011). [CrossRef]
  4. S. A. Gredeskul and Y. S. Kivshar, “Propagation and scattering of nonlinear waves in disordered systems,” Phys. Rep.216, 1–61 (1992). [CrossRef]
  5. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Soliton percolation in random optical lattices,” Opt. Express15, 12409–12417 (2007). [CrossRef] [PubMed]
  6. Y. S. Kivshar, S. A. Gredeskul, A. Sanchez, and L. Vazquez, “Localization decay induced by strong nonlinearity in disordered systems,” Phys. Rev. Lett.64, 1693–1696 (1990). [CrossRef] [PubMed]
  7. A. Pikovsky and S. Fishman, “Scaling properties of weak chao in nonlinear disordered lattcies,” Phys. Rev. E83, 025201 (2011). [CrossRef]
  8. Z. V. Vardeny and A. Nahata, “Photonic quasicrystals: disorder-enhanced light transport,” Nat. Photonics5, 453–454 (2011). [CrossRef]
  9. I. V. Shadrivov, K. Y. Bliokh, V. Freilikher, and Y. S. Kivshar, “Bistability of Anderson localized states in nonlinear random media,” Phys. Rev. Lett.104, 123902 (2010). [CrossRef] [PubMed]
  10. Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in onedimensional disorded photonic lattices,” Phys. Rev. Lett.100, 013906 (2008). [CrossRef] [PubMed]
  11. L. Martin, G. Di Giuseppe, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, A. F. Abouraddy, D. N. Christodoulides, and B. E. A. Saleh, “Anderson localization in optical waveguide arrays with off-diagonal coupling disorder,” Opt. Express19, 13636–13646 (2011). [CrossRef] [PubMed]
  12. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature446, 52–55 (2007). [CrossRef] [PubMed]
  13. L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, and M. Segev, “Disorder-enhanced transport in photonics quasicrystals,” Science332, 1541–1544 (2011). [CrossRef] [PubMed]
  14. N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, “Shocks in nonlocal media,” Phys. Rev. Lett.99, 043903 (2007). [CrossRef] [PubMed]
  15. N. Ghofraniha, L. Santamaria Amato, V. Folli, S. Trillo, E. DelRe, and C. Conti, “Measurement of scaling laws for shock waves in thermal nonlocal media,” Opt. Lett.37, 2325–2327 (2012). [CrossRef] [PubMed]
  16. N. Ghofraniha, L. Santamaria Amato, V. Folli, C. Conti, and E. DelRe, “Formation and propagation of shock waves in nonlocal media,” Poster number JM5A.44 presented at Nonlinear Photonics Conference, Colorado Springs, CO, USA, 17–21 June 2012.
  17. A. Gurevich and L. P. Pitaevskii, “Stationary structure of a collisionless shock wave,” Sov.Phys. JETP38, 291–297 (1973).
  18. J. C. Bronski and D. McLaughlin, Singular Limits of Dispersive Waves (Plenum, New York, 1994).
  19. A. M. Kamchatnov, R. A. Kraenkel, and B. A. Umarov, “Asymptotic soliton train solution of the defocusing nonlinear Schrödinger equation,” Phys. Rev. E66, 036609 (2002). [CrossRef]
  20. C. Conti, A. Fratalocchi, M. Peccianti, G. Ruocco, and S. Trillo, “Observation of a gradient catastrophe generating solitons,” Phys. Rev. Lett.102, 083902 (2009). [CrossRef] [PubMed]
  21. C. Barsi, W. Wan, C. Sun, and J. W. Fleischer, “Dispersive shock waves with nonlocal nonlinearity,” Opt. Lett.32, 2930–2932 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited