OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 27454–27475

Effects of nonlinear phase modulation on Bragg scattering in the low-conversion regime

L. Mejling, D. S. Cargill, C. J. McKinstrie, K. Rottwitt, and R. O. Moore  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 27454-27475 (2012)
http://dx.doi.org/10.1364/OE.20.027454


View Full Text Article

Enhanced HTML    Acrobat PDF (3287 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we consider the effects of nonlinear phase modulation on frequency conversion by four-wave mixing (Bragg scattering) in the low-conversion regime. We derive the Green functions for this process using the time-domain collision method, for partial collisions, in which the four fields interact at the beginning or the end of the fiber, and complete collisions, in which the four fields interact at the midpoint of the fiber. If the Green function is separable, there is only one output Schmidt mode, which is free from temporal entanglement. We find that nonlinear phase modulation always chirps the input and output Schmidt modes and renders the Green function formally nonseparable. However, by pre-chirping the pumps, one can reduce the chirps of the Schmidt modes and enable approximate separability. Thus, even in the presence of nonlinear phase modulation, frequency conversion with arbitrary pulse reshaping is possible, as predicted previously [Opt. Express 20, 8367–8396 (2012)].

© 2012 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Nonlinear Photonics in Optical Fibers

History
Original Manuscript: September 4, 2012
Revised Manuscript: November 9, 2012
Manuscript Accepted: November 12, 2012
Published: November 19, 2012

Virtual Issues
Nonlinear Photonics (2012) Optics Express

Citation
L. Mejling, D. S. Cargill, C. J. McKinstrie, K. Rottwitt, and R. O. Moore, "Effects of nonlinear phase modulation on Bragg scattering in the low-conversion regime," Opt. Express 20, 27454-27475 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-27454


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London)437, 116–120 (2005). [CrossRef]
  2. H. J. Kimble, “The quantum internet,” Nature (London)453, 1023–1030 (2008). [CrossRef]
  3. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987). [CrossRef] [PubMed]
  4. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London)409, 46–52 (2001). [CrossRef]
  5. I. A. Walmsley and M. G. Raymer, “Toward quantum-information processing with photons,” Science307, 1733–1734 (2005). [CrossRef] [PubMed]
  6. P. Kok, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys.79, 135–174 (2007). [CrossRef]
  7. W. Wasilewski and M. G. Raymer, “Pairwise entanglement and readout of atomic-ensemble and optical wave-packet modes in traveling-wave Raman interactions,” Phys. Rev. A73, 063816 (2006). [CrossRef]
  8. D. Kielpinski, J. Corney, and H. Wiseman, “Quantum optical waveform conversion,” Phys. Rev. Lett.106, 130501 (2011). [CrossRef] [PubMed]
  9. A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Opt. Express19, 13770–13778 (2011). [CrossRef] [PubMed]
  10. B. Brecht, A. Eckstein, A. Christ, H. Suche, and C. Silberhorn, “From quantum pulse gate to quantum pulse shaper–engineered frequency conversion in nonlinear optical waveguides,” New J. Phys.13, 065029 (2011). [CrossRef]
  11. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature (London)299, 802–803 (1982). [CrossRef]
  12. J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett.68, 2153–2156 (1992). [CrossRef] [PubMed]
  13. W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes I,” Phys. Rev.124, 1646–1653 (1961). [CrossRef]
  14. J. P. Gordon, W. H. Louisell, and L. R. Walker, “Quantum fluctuations and noise in parametric processes II,” Phys. Rev.129, 481–485 (1963). [CrossRef]
  15. A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt.51, 1433–1445 (2004).
  16. M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 μm by means of frequency upconversion,” Opt. Lett.29, 1449–1451 (2004). [CrossRef] [PubMed]
  17. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett.29, 1518–1520 (2004). [CrossRef] [PubMed]
  18. Y. Ding and Z. Y. Ou, “Frequency downconversion for a quantum network,” Opt. Lett.35, 2591–2593 (2010). [CrossRef] [PubMed]
  19. C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature (London)469, 508–511 (2011). [CrossRef]
  20. E. Saglamyurek, N. Sinclair, J. Jin, J. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature (London)469, 512–515 (2011). [CrossRef]
  21. K. Srinivasan and M. G. Raymer, “Quantum frequency translation of single-photon states,” Opt. Photon. News22(12), 39 (2011). [CrossRef]
  22. C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, “Translation of quantum states by four-wave mixing in fibers,” Opt. Express13, 9131–9142 (2005). [CrossRef] [PubMed]
  23. K. Inoue, “Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights,” IEEE Photon Technol. Lett.6, 1451–1453 (1994). [CrossRef]
  24. M. E. Marhic, Y. Park, F. S. Yang, and L. G. Kazovsky, “Widely tunable spectrum translation and wavelength exchange by four-wave mixing in optical fibers,” Opt. Lett.21, 1906–1908 (1996). [CrossRef] [PubMed]
  25. K. Uesaka, K. K. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quant.8, 560–568 (2002). [CrossRef]
  26. C. J. McKinstrie, M. Yu, M. G. Raymer, and S. Radic, “Quantum noise properties of parametric processes,” Opt. Express13, 4986–5012 (2005). [CrossRef] [PubMed]
  27. A. H. Gnauck, R. M. Jopson, C. J. McKinstrie, J. C. Centanni, and S. Radic, “Demonstration of low-noise frequency conversion by Bragg scattering in a fiber,” Opt. Express14, 8989–8994 (2006). [CrossRef] [PubMed]
  28. T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing,” IEEE Photon. Technol. Lett.16, 551–553 (2004). [CrossRef]
  29. D. Méchin, R. Provo, J. D. Harvey, and C. J. McKinstrie, “180-nm wavelength conversion based on Bragg scattering in an optical fiber,” Opt. Express14, 8995–8999 (2006). [CrossRef] [PubMed]
  30. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Wavelength translation across 210 nm in the visible using vector Bragg scattering in a birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett.23, 109–111 (2011). [CrossRef]
  31. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010). [CrossRef] [PubMed]
  32. H. J. McGuinness, M. G. Raymer, and C. J. McKinstrie, “Theory of quantum frequency translation of light in optical fiber: application to interference of two photons of different color,” Opt. Express19, 17876–17907 (2011). [CrossRef] [PubMed]
  33. L. Mejling, C. J. McKinstrie, M. G. Raymer, and K. Rottwitt, “Quantum frequency translation by four-wave mixing in a fiber: low-conversion regime,” Opt. Express20, 8367–8396 (2012). [CrossRef] [PubMed]
  34. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A64, 063815 (2001). [CrossRef]
  35. C. J. McKinstrie, L. Mejling, M. G. Raymer, and K. Rottwitt, “Quantum-state-preserving optical frequency conversion and pulse reshaping by four-wave mixing,” Phys. Rev. A85, 053829 (2012). [CrossRef]
  36. C. J. McKinstrie and D. S. Cargill, “Simultaneous frequency conversion, regeneration and reshaping of optical signals,” Opt. Express20, 6881–6886 (2012). [CrossRef] [PubMed]
  37. M. Tsang and D. Psaltis, “Propagation of temporal entanglement,” Phys. Rev. A73, 013822 (2006). [CrossRef]
  38. G. J. Gbur, Mathematical Methods for Optical Physics and Engineering (Cambridge University Press, Cambridge, 2011).
  39. X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurement of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express13, 2236–2244 (2005). [CrossRef] [PubMed]
  40. C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite Hilbert space and entropy control,” Phys. Rev. Lett.84, 5304–5307 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited