OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27420–27428

Cascaded modulator architecture for WDM applications

Kapil Debnath, Liam O’Faolain, Frederic Y. Gardes, Andreas G. Steffan, Graham T. Reed, and Thomas F. Krauss  »View Author Affiliations


Optics Express, Vol. 20, Issue 25, pp. 27420-27428 (2012)
http://dx.doi.org/10.1364/OE.20.027420


View Full Text Article

Enhanced HTML    Acrobat PDF (1315 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Integration density, channel scalability, low switching energy and low insertion loss are the major prerequisites for on-chip WDM systems. A number of device geometries have already been demonstrated that fulfill these criteria, at least in part, but combining all of the requirements is still a difficult challenge. Here, we propose and demonstrate a novel architecture consisting of an array of photonic crystal modulators connected by a dielectric bus waveguide. The device architecture features very high scalability and the modulators operate with an AC energy consumption of less than 1fJ/bit. Furthermore, we demonstrate cascadeability and multichannel operation by using a comb laser as the source that simultaneously drives 5 channels.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.2090) Optical devices : Electro-optical devices
(250.5300) Optoelectronics : Photonic integrated circuits
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Integrated Optics

History
Original Manuscript: September 18, 2012
Revised Manuscript: November 10, 2012
Manuscript Accepted: November 14, 2012
Published: November 26, 2012

Citation
Kapil Debnath, Liam O’Faolain, Frederic Y. Gardes, Andreas G. Steffan, Graham T. Reed, and Thomas F. Krauss, "Cascaded modulator architecture for WDM applications," Opt. Express 20, 27420-27428 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-25-27420


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express14(20), 9431–9435 (2006). [CrossRef] [PubMed]
  2. L. Chen, C. R. Doerr, P. Dong, and Y.-K. Chen, “Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing,” Opt. Express19(26), B946–B951 (2011). [CrossRef] [PubMed]
  3. S. Ren, Y. Rong, S. A. Claussen, R. K. Schaevitz, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Lett.24(6), 461–463 (2012). [CrossRef]
  4. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys.73(9), 096501 (2010). [CrossRef]
  5. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005). [CrossRef]
  6. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88(4), 041112 (2006). [CrossRef]
  7. K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, “Novel Dispersion Adapted Photonic Crystal Cavity with Improved Disorder Stability,” IEEE J. Quantum Electron.48(9), 1177–1183 (2012). [CrossRef]
  8. B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008). [CrossRef]
  9. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17(25), 22505–22513 (2009). [CrossRef] [PubMed]
  10. R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A nanophotonic interconnect for high-performance many-core computation,” 16th IEEE Symposium on High Performance Interconnects, 182–189 (2008).
  11. A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” Proc. Soc. Photo Opt. Instrum. Eng.7230, 72300M (2009).
  12. D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009). [CrossRef]
  13. L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22(23), 1744–1746 (2010). [CrossRef]
  14. M. Grande, L. O’Faolain, T. P. White, M. Spurny, A. D’Orazio, and T. F. Krauss, “Optical filter with very large stopband (approximately 300 nm) based on a photonic-crystal vertical-directional coupler,” Opt. Lett.34(21), 3292–3294 (2009). [CrossRef] [PubMed]
  15. F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: a new concept in integrated optics,” J. Lightwave Technol.25(9), 2579–2589 (2007). [CrossRef]
  16. P. Cardile, G. Franzò, R. Lo Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O’ Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98(20), 203506 (2011). [CrossRef]
  17. C. P. Reardon, I. H. Rey, K. Welna, L. O’Faolain, and T. F. Krauss, “Fabrication and characterisation of both photonic crystal slow light waveguides and cavities,” J. Vis. Exp.in press.
  18. T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express16(21), 17076–17081 (2008). [CrossRef] [PubMed]
  19. J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. V. Krishnamoorthy, “A monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-state Circuits47(6), 1309–1322 (2012). [CrossRef]
  20. S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O'Faolain, “Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering,” Phys. Rev. B84(4), 045423 (2011). [CrossRef]
  21. C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express19(13), 12480–12489 (2011). [CrossRef] [PubMed]
  22. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18(10), 9852–9858 (2010). [CrossRef] [PubMed]
  23. L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express17(17), 15248–15256 (2009). [CrossRef] [PubMed]
  24. D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012). [CrossRef]
  25. H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express19(14), 13000–13007 (2011). [CrossRef] [PubMed]
  26. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  27. X. Zheng, Y. Luo, J. Lexau, J. Liu, F. Guoliang Li, H. D. Thacker, I. Shubin, J. Yao, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “2-pJ/bit (On-Chip) 10-Gb/s digital CMOS silicon photonic link,” IEEE Photon. Technol. Lett.24, 1260–1262 (2012).
  28. Q. Fang, T.-Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express18(5), 5106–5113 (2010). [CrossRef] [PubMed]
  29. D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express20(S2Suppl 2), A293–A308 (2012). [CrossRef] [PubMed]
  30. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010). [CrossRef]
  31. W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express19(27), 26017–26026 (2011). [CrossRef] [PubMed]
  32. K. Debnath, L. O'Faolain, F. Y. Gardes, D. Thomson, G. Reed, and T. F. Krauss, “Low insertion loss modulator based on a vertically coupled photonic crystal resonator,” Proc. Soc. Photo Opt. Instrum. Eng.8267, 826701 (2011) (SPIE).
  33. B. Huettl, R. Kaiser, W. Rehbein, H. Stolpe, Ch. Kindel, S. Fidorra, A. Steffan, A. Umbachl, and H. Heidrich, “Low noise monolithic 40 GHz mode-locked DBR lasers based on GaInAsP/InP,” International Conference on Indium Phosphide and Related Materials, 633–636 (2005).
  34. N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express19(18), 17758–17765 (2011). [CrossRef] [PubMed]
  35. A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” J. Emerg. Technol. Comput. Syst.7(2), 7:1–7, 25 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited