OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27554–27561

Modified light emission from emitters coupled to long-range guided modes in strongly absorbing layers

Christophe Arnold, Yichen Zhang, and Jaime Gómez Rivas  »View Author Affiliations

Optics Express, Vol. 20, Issue 25, pp. 27554-27561 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1224 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the near-field coupling and energy transfer between photoexcited dye molecules and guided modes in layers of strongly absorbing dielectrics. The dye molecules decay by exciting long-range guided modes (LRGMs) in a thin layer of chalcogenide glass. These modes can exist in spite of the very large absorption of the material forming the layer. The LRGMs are detected by coupling then out to free space radiation through a prism in the Krestschmann configuration. By calculating the dissipated power of a dipole, representing a dye molecule, in the vicinity of the absorbing thin film, we show that there is a large probability of decay exciting LRGMs. This probability can reach 35% for perpendicularly oriented dipoles. The demonstration of the excitation of LRGMs in thin films of absorbing dielectrics by near-field coupling of excited molecules opens the possibility to compensate for the losses in the propagation of these modes.

© 2012 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(240.6690) Optics at surfaces : Surface waves
(260.3800) Physical optics : Luminescence

ToC Category:
Optics at Surfaces

Original Manuscript: August 24, 2012
Revised Manuscript: November 19, 2012
Manuscript Accepted: November 19, 2012
Published: November 28, 2012

Christophe Arnold, Yichen Zhang, and Jaime Gómez Rivas, "Modified light emission from emitters coupled to long-range guided modes in strongly absorbing layers," Opt. Express 20, 27554-27561 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1, 484–588 (2009). [CrossRef]
  2. R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett.96, 221104 (2010). [CrossRef]
  3. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photon.3, 388–394 (2009). [CrossRef]
  4. G. Nenninger, P. Tobika, J. Homola, and S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuator B-Chem.74, 145–151 (2001). [CrossRef]
  5. G. J. Kovacs, “Surface polariton in the atr angular spectra of a thin iron film bounded by dielectric layers,” J. Opt. Soc. Am.68, 1325–1332 (1978). [CrossRef]
  6. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range coupled surface exciton polaritons,” Phys. Rev. Lett.64, 559–562 (1990). [CrossRef] [PubMed]
  7. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B44, 5855–5872 (1991). [CrossRef]
  8. C. Arnold, Y. Zhang, and J. Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett.96, 113108 (2010). [CrossRef]
  9. Y. Zhang, C. Arnold, P. Offermans, and J. G. Rivas, “Surface wave sensors based on nanometric layers of strongly absorbing materials,” Opt. Express20, 9431–9441 (2012). [CrossRef] [PubMed]
  10. V. Giannini, Y. Zhang, M. Forcales, and J. G. Rivas, “Long-range surface polaritons in ultra-thin films of silicon,” Opt. Express16, 19674–19685 (2008). [CrossRef] [PubMed]
  11. D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photon.2, 684–687 (2008). [CrossRef]
  12. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9, 21–25 (2010). [CrossRef]
  13. J. Seidel, S. Grafstrom, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett.94, 177401 (2005). [CrossRef] [PubMed]
  14. M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett.8, 3998–4001 (2008). [CrossRef] [PubMed]
  15. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101, 226806 (2008). [CrossRef] [PubMed]
  16. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photon.4, 382–387 (2010). [CrossRef]
  17. M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photon.4, 457–461 (2010). [CrossRef]
  18. P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photon.6, 16–24 (2012). [CrossRef]
  19. R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an excited molecule near a metal mirror: Energy transfer in the eu[sup 3 + ]/silver system,” J. Chem. Phys.60, 2184–2185 (1974). [CrossRef]
  20. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113, 195–287 (1984). [CrossRef]
  21. A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B82, 035411 (2010). [CrossRef]
  22. L. Novotny, “Allowed and forbidden light in near-field optics. i. a single dipolar light source,” J. Opt. Soc. Am. A14, 91–104 (1997). [CrossRef]
  23. A. Sommerfeld, “Uber die ausbreitung der wellen in der drahtlosen telegraphie,” Ann. Phys.28, 665–736 (1909). [CrossRef]
  24. J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at a SiO2/Ag interface by silicon quantum dots: Experiment and theory,” Phys. Rev. B73, 075317 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited