OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27708–27724

Characterization of ejected fused silica particles following surface breakdown with nanosecond pulses

Rajesh N. Raman, Selim Elhadj, Raluca A. Negres, Manyalibo J. Matthews, Michael D. Feit, and Stavros G. Demos  »View Author Affiliations

Optics Express, Vol. 20, Issue 25, pp. 27708-27724 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (5740 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The light emission produced near the surface of fused silica following laser-induced breakdown on the exit surface was spatially and spectrally resolved. This signal is in part generated by ejected particles while traveling outside the hot ionized region. The thermal emission produced by the particles can be separated from the plasma emission near the surface and its spectral characteristics provide information on the temperature of the particles after ejection from the surface. Assuming the emission is thermal in origin, data suggest an initial average temperature on the order of at least 0.5 eV.

© 2012 OSA

OCIS Codes
(110.4190) Imaging systems : Multiple imaging
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.2140) Spectroscopy : Emission
(350.4990) Other areas of optics : Particles
(110.6915) Imaging systems : Time imaging

ToC Category:
Laser Microfabrication

Original Manuscript: August 13, 2012
Manuscript Accepted: October 24, 2012
Published: November 29, 2012

Rajesh N. Raman, Selim Elhadj, Raluca A. Negres, Manyalibo J. Matthews, Michael D. Feit, and Stavros G. Demos, "Characterization of ejected fused silica particles following surface breakdown with nanosecond pulses," Opt. Express 20, 27708-27724 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE4679, 173–185 (2002). [CrossRef]
  2. S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys.82(5), 2140–2146 (1997). [CrossRef]
  3. J. Hermann, C. Boulmer-Leborgne, and D. Hong, “Diagnostics of the early phase of an ultraviolet laser induced plasma by spectral line analysis considering self-absorption,” J. Appl. Phys.83(2), 691–696 (1998). [CrossRef]
  4. H. C. Liu, X. L. Mao, J. H. Yoo, and R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta B54(11), 1607–1624 (1999). [CrossRef]
  5. M. Milán and J. J. Laserna, “Diagnostics of silicon plasmas produced by visible nanosecond laser ablation,” Spectrochim. Acta B56(3), 275–288 (2001). [CrossRef]
  6. M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol.12(2), 185–198 (2003). [CrossRef]
  7. C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta B63(9), 893–916 (2008). [CrossRef]
  8. J. P. Singh and S. N. Thakur, eds., in Laser-Induced Breakdown Spectroscopy (Elsevier, Oxford, 2007).
  9. P. S. Dalyander, I. B. Gornushkin, and D. W. Hahn, “Numerical simulation of laser-induced breakdown spectroscopy: modeling of aerosol analysis with finite diffusion and vaporization effects,” Spectrochim. Acta B63(2), 293–304 (2008). [CrossRef]
  10. J. E. Carranza and D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem.74(21), 5450–5454 (2002). [CrossRef] [PubMed]
  11. V. Hohreiter and D. W. Hahn, “Plasma-particle interactions in a laser-induced plasma: implications for laser-induced breakdown spectroscopy,” Anal. Chem.78(5), 1509–1514 (2006). [CrossRef] [PubMed]
  12. G. M. Hieftje, R. M. Miller, Y. Pak, and E. P. Wittig, “Theoretical examination of solute particle vaporization in analytical atomic spectrometry,” Anal. Chem.59(24), 2861–2872 (1987). [CrossRef]
  13. G. A. Lithgow and S. G. Buckley, “Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B60(7-8), 1060–1069 (2005). [CrossRef]
  14. I. B. Gornushkin, A. Ya. Kazakov, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Radiation dynamics of post-breakdown laser induced plasma,” Spectrochim. Acta B59(4), 401–418 (2004). [CrossRef]
  15. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett.84(22), 4502–4505 (2004). [CrossRef]
  16. R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett.98(5), 051901 (2011). [CrossRef]
  17. R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng.50(1), 013602 (2011). [CrossRef]
  18. G. Koren and U. P. Oppenheim, “Laser ablation of polymers in pressurized gas ambients,” Appl. Phys. B42(1), 41–43 (1987). [CrossRef]
  19. A. Miotello, R. Kelly, B. Braren, and C. E. Otis, “Novel geometric effects observed in debris when polymers are laser sputtered,” Appl. Phys. Lett.61(23), 2784–2786 (1992). [CrossRef]
  20. F. Wagner and P. Hoffmann, “Structure formation in excimer laser ablation of stretched poly(ethylene therepthalate) (PET): the influence of scanning ablation,” Appl. Phys., A Mater. Sci. Process.69(7), S841–S844 (1999). [CrossRef]
  21. J. T. Dickinson, S. C. Langford, J. J. Shin, and D. L. Doering, “Positive ion emission from excimer laser excited MgO surfaces,” Phys. Rev. Lett.73(19), 2630–2633 (1994). [CrossRef] [PubMed]
  22. S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of vacuum ultraviolet excimer laser radiation with fused silica. I. Positive ion emission,” J. Appl. Phys.107(3), 033107 (2010). [CrossRef]
  23. V. Narayanan, V. Singh, P. K. Pandey, N. Shukla, and R. K. Thareja, “Increasing lifetime of the plasma channel formed in air using picoseconds and nanosecond laser pulses,” J. Appl. Phys.101(7), 073301 (2007). [CrossRef]
  24. A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion45(2), 89–103 (2003). [CrossRef]
  25. S. Elhadj, M. J. Matthews, S. T. Yang, and D. J. Cooke, “Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics,” Opt. Express20(2), 1575–1587 (2012). [CrossRef] [PubMed]
  26. S. I. Anisimov and V. A. Khokhlov, Instabilities in Laser-Matter Interaction (CRC Press, 1999).
  27. H. L. Schick, “Thermodynamic analysis of the high temperature vaporization properties of silica,” Chem. Rev.60(4), 331–362 (1960). [CrossRef]
  28. S. Elhadj, S. R. Qiu, A. M. Monterrosa, and C. J. Stolz, “Heating dynamics of CO2-laser irradiated silica particles with evaporative shrinking: measurements and modeling,” J. Appl. Phys.111(9), 093113 (2012). [CrossRef]
  29. R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids5(2), 123–175 (1970). [CrossRef]
  30. S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys.106(10), 103106 (2009). [CrossRef]
  31. F. Armero and J. C. Simo, “A new unconditionally stable fractional step method for nonlinear coupled thermomechanical problems,” Int. J. Numer. Methods Eng.35(4), 737–766 (1992). [CrossRef]
  32. B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett.106(2), 027401 (2011). [CrossRef] [PubMed]
  33. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited