OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27866–27873

Modal decomposition without a priori scale information

Christian Schulze, Sandile Ngcobo, Michael Duparré, and Andrew Forbes  »View Author Affiliations

Optics Express, Vol. 20, Issue 25, pp. 27866-27873 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2205 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The modal decomposition of an arbitrary optical field may be done without regard to the spatial scale of the chosen basis functions, but this generally leads to a large number of modes in the expansion. While this may be considered as mathematically correct, it is not efficient and not physically representative of the underlying field. Here we demonstrate a modal decomposition approach that requires no a priori knowledge of the spatial scale of the modes, but nevertheless leads to an optimised modal expansion. We illustrate the power of the method by successfully decomposing beams from a diode-pumped solid state laser resonator into an optimised Laguerre-Gaussian mode set. Our experimental results, which are in agreement with theory, illustrate the versatility of the approach.

© 2012 OSA

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(090.1995) Holography : Digital holography
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: October 5, 2012
Revised Manuscript: November 9, 2012
Manuscript Accepted: November 13, 2012
Published: November 29, 2012

Christian Schulze, Sandile Ngcobo, Michael Duparré, and Andrew Forbes, "Modal decomposition without a priori scale information," Opt. Express 20, 27866-27873 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill Publishing Company, 1968).
  2. M. A. Golub, A. M. Prokhorov, I. N. Sisakian, and V. A. Soifer “Synthesis of spatial filters for investigation of the transverse mode composition of coherent radiation,” Sov. J. Quantum Electron.9, 1866–1868 (1982).
  3. E. Tervonen, J. Turunen, and A. Friberg, “Transverse laser mode structure determination from spatial coherence measurements: Experimental results,” Appl. Phys. B.49, 409–414 (1989). [CrossRef]
  4. A. Cutolo, T. Isernia, I. Izzo, R. Pierri, and L. Zeni, “Transverse mode analysis of a laser beam by near-and far-field intensity measurements,” Appl. Opt.34, 7974–7978 (1995). [CrossRef] [PubMed]
  5. M. Santarsiero, F. Gori, R. Borghi, and G. Guattari, “Evaluation of the modal structure of light beams composed of incoherent mixtures of hermite-gaussian modes,” Appl. Opt.38, 5272–5281 (1999). [CrossRef]
  6. X. Xue, H. Wei, and A. G. Kirk, “Intensity-based modal decomposition of optical beams in terms of hermite–gaussian functions,” J. Opt. Soc. Am. A17, 1086–1091 (2000). [CrossRef]
  7. D. Flamm, O. A. Schmidt, C. Schulze, J. Borchardt, T. Kaiser, S. Schröter, and M. Duparré, “Measuring the spatial polarization distribution of multimode beams emerging from passive step-index large-mode-area fibers,” Opt. Lett.35, 3429–3431 (2010). [CrossRef] [PubMed]
  8. T. Kaiser, D. Flamm, S. Schröter, and M. Duparré, “Complete modal decomposition for optical fibers using CGH-based correlation filters,” Opt. Express17, 9347–9356 (2009). [CrossRef] [PubMed]
  9. D. Flamm, D. Naidoo, C. Schulze, A. Forbes, and M. Duparré, “Mode analysis with a spatial light modulator as a correlation filter,” Opt. Lett.37, 2478–2480 (2012). [CrossRef] [PubMed]
  10. O. A. Schmidt, C. Schulze, D. Flamm, R. Brüning, T. Kaiser, S. Schröter, and M. Duparré, “Real-time determination of laser beam quality by modal decomposition,” Opt. Express19, 6741–6748 (2011). [CrossRef] [PubMed]
  11. I. A. Litvin, A. Dudley, and A. Forbes, “Poynting vector and orbital angular momentum density of superpositions of bessel beams,” Opt. Express19, 16760–16771 (2011). [CrossRef] [PubMed]
  12. A. Dudley, I. A. Litvin, and A. Forbes, “Quantitative measurement of the orbital angular momentum density of light,” Appl. Opt.51, 823–833 (2012). [CrossRef] [PubMed]
  13. C. Schulze, D. Naidoo, D. Flamm, O. A. Schmidt, A. Forbes, and M. Duparré, “Wavefront reconstruction by modal decomposition,” Opt. Express20, 19714–19725 (2012). [CrossRef] [PubMed]
  14. I. A. Litvin, A. Dudley, F. S. Roux, and A. Forbes, “Azimuthal decomposition with digital holograms,” Opt. Express20, 10996–11004 (2012). [CrossRef] [PubMed]
  15. A. Siegman, “How to (Maybe) Measure Laser Beam Quality,” in DPSS (Diode Pumped Solid State) Lasers: Applications and Issues (Optical Society of America, 1998), p. MQ1.
  16. ISO, “ISO 11146-1:2005 Test methods for laser beam widths, divergence angles and beam propagation ratios Part 1: Stigmatic and simple astigmatic beams,” (2005).
  17. D. Flamm, C. Schulze, R. Brüning, O. A. Schmidt, T. Kaiser, S. Schröter, and M. Duparré, “Fast M2 measurement for fiber beams based on modal analysis,” Appl. Opt.51, 987–993 (2012). [CrossRef] [PubMed]
  18. C. Schulze, D. Flamm, M. Duparré, and A. Forbes, “Beam-quality measurements using a spatial light modulator,” Opt. Lett.37, 4687–4689 (2012).
  19. H. Kogelnik and T. Li, “Laser Beams and Resonators,” Appl. Opt.5, 1550–1567 (1966). [CrossRef] [PubMed]
  20. A. Arrizon, “Complex modulation with a twisted-nematic liquid-crystal spatial light modulator: double-pixel approach,” Opt. Lett.28, 1359–1361 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited