OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 26 — Dec. 10, 2012
  • pp: B124–B130

Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, and E. M. Dianov  »View Author Affiliations

Optics Express, Vol. 20, Issue 26, pp. B124-B130 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1055 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a thulium-doped fiber laser mode-locked by a carboxymetylcellulose high-optical quality film with dispersed single-walled carbon nanotubes. Laser system based on the nonlinear amplifying loop mirror generates the shortest pulses earlier obtained in SWCNT mode-locked thulium-doped fiber lasers with a duration of 450 fs and 18 mW maximum average power at 1870 nm.

© 2012 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Fibers, Fiber Devices, and Amplifiers

Original Manuscript: September 14, 2012
Revised Manuscript: October 26, 2012
Manuscript Accepted: October 30, 2012
Published: November 28, 2012

Virtual Issues
European Conference on Optical Communication 2012 (2012) Optics Express

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, and E. M. Dianov, "Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber," Opt. Express 20, B124-B130 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Kadwani, R. A. Sims, M. Baudelet, L. Shah, and M. C. Richardson, “Atmospheric propagation testing using broadband thulium fiber systems,” in Proc. OSA/FILAS, FWB3, (2011).
  2. G. Hüttmann, C. Yao, and E. Endl, “New concepts in laser medicine: towards a laser surgery with cellular precision,” Med. Laser Appl.20(2), 135–139 (2005). [CrossRef]
  3. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 microm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett.33(12), 1336–1338 (2008). [CrossRef] [PubMed]
  4. K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett.21(3), 128–130 (2009). [CrossRef] [PubMed]
  5. S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express17(4), 2358–2363 (2009). [CrossRef] [PubMed]
  6. M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, “Nonlinear amplifying loop mirror,” Opt. Lett.15(13), 752–754 (1990). [CrossRef] [PubMed]
  7. W. S. Wong, S. Namiki, M. Margalit, H. A. Haus, and E. P. Ippen, “Self-switching of optical pulses in dispersion-imbalanced nonlinear loop mirrors,” Opt. Lett.22(15), 1150–1152 (1997). [CrossRef] [PubMed]
  8. K. Smith, N. J. Doran, and P. G. J. Wigley, “Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror,” Opt. Lett.15(22), 1294–1296 (1990). [CrossRef] [PubMed]
  9. E. M. Dianov and V. M. Mashinsky, “Germania-Based Core Optical Fibers,” J. Lightwave Technol.23(11), 3500–3508 (2005). [CrossRef]
  10. E. D. Obraztsova, J.-M. Bonard, V. L. Kuznetsov, V. I. Zaikovskii, S. M. Pimenov, A. S. Pozharov, S. V. Terekhov, V. I. Konov, A. N. Obraztsov, and A. P. Volkov, “Structural measurements for single-wall carbon nanotubes by Raman scattering technique,” Nanostruct. Mater.12(1-4), 567–572 (1999). [CrossRef]
  11. V. Tausenev, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, V. I. Konov, A. V. Konyashchenko, P. G. Kryukov, and E. M. Dianov, “Self-mode-locking in erbium-doped ébre lasers with saturable polymer élm absorbers containing single-wall carbon nanotubes synthesised by the arc discharge method,” Quantum Electron.37(3), 205–208 (2007). [CrossRef]
  12. A. I. Chernov, E. D. Obraztsova, and A. S. Lobach, “Optical properties of polymer films with embedded single-wall carbon nanotubes,” Phys. Status Solidi, B Basic Res.244(11), 4231–4235 (2007). [CrossRef]
  13. S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–807 (1992). [CrossRef]
  14. G. P. Agraval, Applications of Nonlinear Fiber Optics (Academic Press San Diego, 2001).
  15. J.-C. M. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, “Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy,” Appl. Opt.24(9), 1270–1285 (1985). [CrossRef] [PubMed]
  16. I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron.30(1), 194–199 (1994). [CrossRef]
  17. M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, “Nonlinear amplifying loop mirror based mode-locked thulium doped fiber laser,” IEEE Photon. Technol. Lett.24(14), 1254–1256 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited