OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 26 — Dec. 10, 2012
  • pp: B131–B140

Experimental demonstration of arrayed optical amplifiers with a shared pump laser for realizing colorless, directionless, contentionless ROADM

Yohei Sakamaki, Takeshi Kawai, Mitsunori Fukutoku, Tomoyoshi Kataoka, and Kenya Suzuki  »View Author Affiliations

Optics Express, Vol. 20, Issue 26, pp. B131-B140 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1134 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose arrayed optical amplifiers that share a single pump laser with the aim of realizing full-add/drop colorless, directionless, contentionless ROADM nodes and demonstrate its feasibility in experiments. The experimental results show that the fabricated arrayed optical amplifiers can be made to correspond properly to wavelength path reconfigurations by adjusting a splitting ratio of the variable splitter between the pump laser and eight EDFAs, and cause no significant penalty for 128-Gbit/s PDM-QPSK signal transmission.

© 2012 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(230.4480) Optical devices : Optical amplifiers

ToC Category:
Subsystems for Optical Networks

Original Manuscript: September 14, 2012
Revised Manuscript: November 4, 2012
Manuscript Accepted: November 5, 2012
Published: November 28, 2012

Virtual Issues
European Conference on Optical Communication 2012 (2012) Optics Express

Yohei Sakamaki, Takeshi Kawai, Mitsunori Fukutoku, Tomoyoshi Kataoka, and Kenya Suzuki, "Experimental demonstration of arrayed optical amplifiers with a shared pump laser for realizing colorless, directionless, contentionless ROADM," Opt. Express 20, B131-B140 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag.48(7), 40–50 (2010). [CrossRef]
  2. R. Jensen, A. Lord, and N. Parsons, “Colourless, directionless, contentionless ROADM architecture using low-loss optical matrix switches,” ECOC 2010, Mo.2.D.2 (2010).
  3. S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. B. Yu, and G. Q. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8×8 matrix switch,” OFC/NFOEC 2011, OTuM2 (2011).
  4. R. Jensen, A. Lord, and N. Parsons, “Highly scalable OXC-based contentionless ROADM architecture with reduced network implementation costs,” OFC/NFOEC 2012, NW3F.7 (2012).
  5. Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, T. Kataoka, T. Watanabe, and Y. Ishii, “Experimental demonstration of multi-degree colorless, directionless, contentionless ROADM for 127-Gbit/s PDM-QPSK transmission system,” Opt. Express19(26), B1–B11 (2011). [CrossRef] [PubMed]
  6. W. I. Way, “Optimum architecture for M×N multicast switch-based colorless, directionless, contentionless, and flexible-grid ROADM,” OFC/NFOEC 2012, NW3F.5 (2012).
  7. G. J. Cowle, and M. Bolshtyansky, Optical amplifier trends for CDC node network architectures,” OECC 2012, 6D2–4 (2012).
  8. Y. Sakamaki, T. Kawai, M. Fukutoku, T. Kataoka, and K. Suzuki, “Full-add/drop C/D/C-less ROADM achieved by developing arrayed optical amplifiers with a shared pump laser,” ECOC 2012, P3.03 (2012).
  9. D. R. Zimmerman and L. H. Spiekman, “Amplifiers for the masses: EDFA, EDWA, and SOA amplest for metro and access applications,” J. Lightwave Technol.22(1), 63–70 (2004). [CrossRef]
  10. M. Bolshtyansky, H. Cheng, P. Colbourne, Z. W. Dong, D. Dougherty, K. Y. Huang, G. Wills, and G. Cowle, “Planar waveguide integrated EDFA,” OFC2008, PDP17 (2008).
  11. T. Watanabe, K. Suzuki, and T. Takahashi, “Silica-based PLC transponder aggregators for colorless, directionless, and contentionless ROADM,” OFC/NFOEC 2012, OTh3D.1 (2012).
  12. Y. Ishii, K. Hadama, J. Yamaguchi, Y. Kawajiri, E. Hashimoto, T. Matsuura, and F. Shimokawa, “MEMS-based 1×43 wavelength-selective switch with flat passband,” ECOC 2009, PD 1.9 (2009).
  13. Optical Internetworking Forum, “Implementation agreement for integrated dual polarization intradyne coherent receivers,” (2010). http://www.oiforum.com/public/documents/OIF-DPC-RX-01.0.pdf .
  14. Optical Internetworking Forum, “Implementation agreement for integrated polarization multiplexed quadrature modulated transmitters,” (2010). http://www.oiforum.com/public/documents/OIF-PMQ-TX-01.0.pdf .
  15. Y. Hashizume, Y. Inoue, T. Kominato, T. Shibata, and M. Okuno, “Low-PDL 16-channel variable optical attenuator array using silica-based PLC,” OFC2004, WC4 (2004).
  16. K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol.14(10), 2301–2310 (1996). [CrossRef]
  17. H. Ono, T. Watanabe, K. Suzuki, A. Mori, T. Takahashi, and T. Sakamoto, “An erbium-doped fibre amplifier with widely variable gain employing integrated components on a planar lightwave circuit,” ECOC 2011, Th. 11. LeCervin. 6. (2011).
  18. K. Murata, T. Saida, K. Sano, I. Ogawa, H. Fukuyama, R. Kasahara, Y. Muramoto, H. Nosaka, S. Tsunashima, T. Mizuno, H. Tanobe, K. Hattori, T. Yoshimatsu, H. Kawakami, and E. Yoshida, “100-Gbit/s PDM-QPSK coherent receiver with wide dynamic range and excellent common-mode rejection ratio,” Opt. Express19(26), B125–B130 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited