OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 26 — Dec. 10, 2012
  • pp: B357–B364

Low-driving-current InGaAsP photonic-wire optical switches using III-V CMOS photonics platform

Yuki Ikku, Masafumi Yokoyama, Osamu Ichikawa, Masahiko Hata, Mitsuru Takenaka, and Shinichi Takagi  »View Author Affiliations


Optics Express, Vol. 20, Issue 26, pp. B357-B364 (2012)
http://dx.doi.org/10.1364/OE.20.00B357


View Full Text Article

Enhanced HTML    Acrobat PDF (2348 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Electrically-driven Mach-Zehnder interferometer type InGaAsP photonic-wire optical switches have been demonstrated using a III-V-on-insulator structure bonded on a thermally oxidized Si with an Al2O3/InP bonding interfacial layer which enables strong wafer bonding and low propagation loss. Lateral p-i-n junctions in the InGaAsP photonic-wire waveguides were formed by using ion implantation for changing refractive index in the InGaAsP waveguide through carrier injection. Optical switching with 10 dB extinction ratio was achieved with driving current of 200 µA which is approximately 10 times smaller than that of Si photonic-wire optical switch owing to larger free-carrier effect in InGaAsP than that in Si.

© 2012 OSA

OCIS Codes
(250.5300) Optoelectronics : Photonic integrated circuits
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Waveguide and Optoelectronic Devices

History
Original Manuscript: October 2, 2012
Manuscript Accepted: November 11, 2012
Published: November 29, 2012

Virtual Issues
European Conference on Optical Communication 2012 (2012) Optics Express

Citation
Yuki Ikku, Masafumi Yokoyama, Osamu Ichikawa, Masahiko Hata, Mitsuru Takenaka, and Shinichi Takagi, "Low-driving-current InGaAsP photonic-wire optical switches using III-V CMOS photonics platform," Opt. Express 20, B357-B364 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-26-B357


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  2. J. V. Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2×2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express17(26), 24020–24029 (2007).
  3. G. R. Zhou, M. W. Geis, S. J. Spector, F. Gan, M. E. Grein, R. T. Schulein, J. S. Orcutt, J. U. Yoon, D. M. Lennon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Effect of carrier lifetime on forward-biased silicon Mach-Zehnder modulators,” Opt. Express16(8), 5218–5226 (2008). [CrossRef] [PubMed]
  4. G. V. Treyz, P. G. May, and J.-M. Halbout, “Silicon Mach–Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett.59(7), 771–773 (1991). [CrossRef]
  5. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987). [CrossRef]
  6. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990). [CrossRef]
  7. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express12(8), 1622–1631 (2004). [CrossRef] [PubMed]
  8. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett.26(23), 1888–1890 (2001). [CrossRef] [PubMed]
  9. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett.16(5), 1328–1330 (2004). [CrossRef]
  10. Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett.16(11), 2478–2480 (2004). [CrossRef]
  11. C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel compact polarization converters based on ultra short bends,” IEEE Photon. Technol. Lett.8(10), 1346–1348 (1996). [CrossRef]
  12. M. Takenaka, M. Yokoyama, M. Sugiyama, Y. Nakano, and S. Takagi, “Ultrasmall arrayed waveguide grating multiplexer using InP-based photonic wire waveguide on Si wafer for III-V CMOS photonics,” in proceedings of Optical Fiber Communication Conference, OThS5, San Diego, USA (2010).
  13. M. Takenaka and Y. Nakano, “InP photonic wire waveguide using InAlAs oxide cladding layer,” Opt. Express15(13), 8422–8427 (2007). [CrossRef] [PubMed]
  14. Y. Xuan, Y. Q. Wu, and P. D. Ye, “High-performance inversion-type enhancement-mode InGaAs MOSFET with maximum drain current exceeding 1 A/mm,” IEEE Electron Device Lett.29(4), 294–296 (2008). [CrossRef]
  15. P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H.-J. L. Gossmann, M. Hong, K. K. Ng, and J. Bude, “Depletion-mode InGaAs metal-oxide-semiconductor field-effect transistor with oxide gate dielectric grown by atomic-layer deposition,” Appl. Phys. Lett.84(3), 434–436 (2004). [CrossRef]
  16. T. D. Lin, H. C. Chiu, P. Chang, L. T. Tung, C. P. Chen, and M. Hong, aJ. Kwo, W. Tsai, and Y. C. Wang, “High-performance self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistor with Al2O3/Ga2O3(Gd2O3) as gate dielectrics,” Appl. Phys. Lett.93, 033516 (2008).
  17. M. Yokoyama, R. Iida, S. H. Kim, N. Taoka, Y. Urabe, H. Takagi, T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Sugiyama, Y. Nakano, M. Takenaka, and S. Takagi, “Sub-10-nm extremely thin body InGaAs-on-insulator MOSFETs on Si wafers with ultrathin Al2O3 buried oxide layers,” IEEE Electron Device Lett.32(9), 1218–1220 (2011). [CrossRef]
  18. International Technology Roadmap for Semiconductors (ITRS), http://www.itrs.net .
  19. M. Takenaka, M. Yokoyama, M. Sugiyama, Y. Nakano, and S. Takagi, “InGaAsP photonic wire based ultrasmall arrayed waveguide grating multiplexer on Si wafer,” Appl. Phys. Express2(12), 122201 (2009). [CrossRef]
  20. J. P. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable Bragg filters,” IEEE J. Quantum Electron.30(8), 1801–1816 (1994). [CrossRef]
  21. F. Stern, “Dispersion of the index of refraction near the absorption edge of semiconductors,” Phys. Rev. A133, 1653–1664 (1964).
  22. T. P. Pearsall, GaInAsP Alloy Semiconductors (Wiley, 1982).
  23. W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, “Bonding of silicon wafers for silicon-on-insulator,” J. Appl. Phys.64(10), 4943–4950 (1988). [CrossRef]
  24. T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express19(12), 11529–11538 (2011). [CrossRef] [PubMed]
  25. D. Liang, A. W. Fang, D. C. Oakley, A. Napoleone, D. C. Chapman, C.-L. Chen, P. W. Juodawlkis, O. Raday, and J. E. Bowers, “150 mm InP-to-silicon direct wafer bonding for silicon photonic integrated circuits,” in Proceedings of 214th Electrochemical Society Meeting, paper 2220, Honolulu, USA (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited