OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 26 — Dec. 10, 2012
  • pp: B77–B84

Large-effective-area uncoupled few-mode multi-core fiber

Yusuke Sasaki, Katsuhiro Takenaga, Ning Guan, Shoichiro Matsuo, Kunimasa Saitoh, and Masanori Koshiba  »View Author Affiliations


Optics Express, Vol. 20, Issue 26, pp. B77-B84 (2012)
http://dx.doi.org/10.1364/OE.20.000B77


View Full Text Article

Enhanced HTML    Acrobat PDF (1521 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Characteristics of few-mode multi-core fiber (FM-MCF) were numerically analyzed and experimentally confirmed. The cores of FM-MCF were designed to support transmission of LP01 and LP11 modes from the point of bending loss of LP11 and LP21 modes. Inter-core crosstalk between LP11 mode was calculated to determine core pitch of fibers. It was confirmed that the fabricated fibers was two-mode transmission over C-band and L-band with the effective area of LP01 mode of about 110 μm2 at 1550 nm. The crosstalk of the fibers was estimated to be smaller than −30 dB at 1550 nm after 100-km propagation. The crosstalk dependence on wavelength was also measured and matched well with the simulated results.

© 2012 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication

ToC Category:
Fibers, Fiber Devices, and Amplifiers

History
Original Manuscript: October 1, 2012
Revised Manuscript: November 5, 2012
Manuscript Accepted: November 9, 2012
Published: November 28, 2012

Virtual Issues
European Conference on Optical Communication 2012 (2012) Optics Express

Citation
Yusuke Sasaki, Katsuhiro Takenaga, Ning Guan, Shoichiro Matsuo, Kunimasa Saitoh, and Masanori Koshiba, "Large-effective-area uncoupled few-mode multi-core fiber," Opt. Express 20, B77-B84 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-26-B77


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Morioka, “New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond,” in Proceedings of 15th OptoElectronics and Communications Conference (Institute of Electrical and Electronics Engineers, 2009), paper FT4.
  2. S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett.36(23), 4626–4628 (2011). [CrossRef] [PubMed]
  3. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper PDP5C.1.
  4. M. Salsi, C. Koebele, G. Charlet, and S. Bigo, “Mode division multiplexed transmission with a weakly coupled few-mode fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper OTu2C.5.
  5. K. Takenaga, Y. Sasaki, N. Guan, S. Matsuo, M. Kasahara, K. Saitoh, and M. Koshiba, “A large-effective-area few-mode multi-core fiber,” IEEE Photon. Technol. Lett.24(21), 1941–1944 (2012). [CrossRef]
  6. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron.38(7), 927–933 (2002). [CrossRef]
  7. R. Maruyama, N. Kuwaki, S. Matsuo, K. Sato, and M. Ohashi, “Mode dispersion compensating optical transmission line composed of two-mode optical fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper JW2A.3.
  8. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multicore fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun.E94-B(2), 409–416 (2011). [CrossRef]
  9. T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fiber due to fiber bend,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (Institute of Electrical and Electronics Engineers, 2010), paper We.8.F.6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited