OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28017–28024

A perfect absorber made of a graphene micro-ribbon metamaterial

Rasoul Alaee, Mohamed Farhat, Carsten Rockstuhl, and Falk Lederer  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28017-28024 (2012)
http://dx.doi.org/10.1364/OE.20.028017


View Full Text Article

Enhanced HTML    Acrobat PDF (1259 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metamaterial-based perfect absorbers promise many applications. Perfect absorption is characterized by the complete suppression of transmission and reflection and complete dissipation of the incident energy by the absorptive meta-atoms. A certain absorption spectrum is usually assigned to a bulk medium and serves as a signature of the respective material. Here we show how to use graphene flakes as building blocks for perfect absorbers. Then, an absorbing meta-atom only consists of a molecular monolayer placed at an appropriate distance from a metallic ground plate. We show that the functionality of such device is intuitively and correctly explained by a Fabry-Perot model.

© 2012 OSA

OCIS Codes
(310.3915) Thin films : Metallic, opaque, and absorbing coatings
(160.3918) Materials : Metamaterials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Metamaterials

History
Original Manuscript: September 18, 2012
Revised Manuscript: October 25, 2012
Manuscript Accepted: October 25, 2012
Published: December 3, 2012

Citation
Rasoul Alaee, Mohamed Farhat, Carsten Rockstuhl, and Falk Lederer, "A perfect absorber made of a graphene micro-ribbon metamaterial," Opt. Express 20, 28017-28024 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28017


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann, “Dünnste kohlenstoff-folien,” Z. Naturforschg.17, 150–157 (1962).
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004). [CrossRef] [PubMed]
  3. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81, 109–162 (2009). [CrossRef]
  4. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature442, 282–286 (2006). [CrossRef] [PubMed]
  5. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science312, 1191–1196 (2006). [CrossRef] [PubMed]
  6. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308 (2008). [CrossRef] [PubMed]
  7. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474, 64–67 (2011). [CrossRef] [PubMed]
  8. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011). [CrossRef] [PubMed]
  9. P.-Y. Chen and A. Alù, “Atomically-thin surface cloak using graphene monolayers,” ACS Nano5, 5855–5863 (2011). [CrossRef] [PubMed]
  10. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012). [CrossRef]
  11. A. Manjavacas, P. Nordlander, and F. J. G. de Abajo, “Plasmon blockade in nanostructured graphene,” ACS Nano6, 1724–1731 (2012). [CrossRef] [PubMed]
  12. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnology6, 630–634 (2011). [CrossRef]
  13. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012). [PubMed]
  14. J. Chen, M. Badioli, P. Alonso-Gonzlez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012). [PubMed]
  15. E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75, 205418 (2007). [CrossRef]
  16. F. Rana, “Graphene terahertz plasmon oscillators,” IEEE Trans. Nanotechnol.7, 91–99 (2008). [CrossRef]
  17. M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009). [CrossRef]
  18. A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B84, 195446 (2011).
  19. P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nature Photonics6, 259–264 (2011). [CrossRef]
  20. F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett.11, 3370–3377 (2011). [CrossRef] [PubMed]
  21. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008). [CrossRef] [PubMed]
  22. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24, OP98–OP120, (2012). [CrossRef] [PubMed]
  23. T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2, 299–301 (2008). [CrossRef]
  24. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B79, 045131 (2009). [CrossRef]
  25. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun.2, 517 (2011). [CrossRef] [PubMed]
  26. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107, 045901 (2011). [CrossRef] [PubMed]
  27. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010). [CrossRef] [PubMed]
  28. C. Wu and G. Shvets, “Design of metamaterial surfaces with broad-band absorbance,” Opt. Lett.37, 308–310 (2012). [CrossRef] [PubMed]
  29. C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B84, 075102 (2011). [CrossRef]
  30. Y. D. Chong, Li Ge, Hui Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett.105, 053901 (2010). [CrossRef] [PubMed]
  31. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science331, 889–892 (2011). [CrossRef] [PubMed]
  32. S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012). [CrossRef] [PubMed]
  33. A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B85, 081405(R) (2012). [CrossRef]
  34. C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B84, 075102 (2011). [CrossRef]
  35. W. W. Salisbury, “Absorbent body for electromagnetic waves,” US Patent 2599944 (1952).
  36. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express20, 7165–7172 (2012). [CrossRef] [PubMed]
  37. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett.101, 101102 (2012). [CrossRef]
  38. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 2005).
  39. G. W. Hanson, “Dyadic Greens functions and guided surface waves on graphene,” J. Appl. Phys.103, 064302 (2006). [CrossRef]
  40. L. A. Falkovsky and S. S. Pershoguba, “Optical Far-Infrared Properties of a Graphene Monolayer and Multilayer,” Phys. Rev. B76, 153410 (2007). [CrossRef]
  41. E. H. Hwang and S. Das Sarma “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75, 205418 (2007). [CrossRef]
  42. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte “Conductivity Magneto-optical in Graphene,” J. Phys. Condens. Matter, 19, 026222 (2007). [CrossRef]
  43. L. Li, “New formulation of the fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A14, 2758–2767 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited