OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28025–28032

A four-port plasmonic quasi-circulator based on metal-insulator-metal waveguides

Kunhua Wen, Lianshan Yan, Wei Pan, Bin Luo, Zhen Guo, and Yinghui Guo  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28025-28032 (2012)
http://dx.doi.org/10.1364/OE.20.028025


View Full Text Article

Enhanced HTML    Acrobat PDF (1962 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A metal-insulator-metal (MIM)-based four-port quasi-circulator consisting of four bus waveguides and eight narrow inside/outside slits is proposed without using nonreciprocity. Once the input port is defined, only a specific output port could be obtained by proper the design of parameters of the waveguides and slits. Simulation results based on finite-different time-domain (FDTD) method demonstrate that the transmittance at the center wavelength of the appropriate output port can reach 0.63 while those of the other two output ports are lower than 0.06. Through adjusting the slits spacing or optimizing the insulator material in the slits, the isolation of the circulator could be further improved with a slight sacrifice of the transmission. Such structure could also be used for wavelength demultiplexing with the center wavelength determined by the length of the bus waveguides and slits.

© 2012 OSA

OCIS Codes
(230.7380) Optical devices : Waveguides, channeled
(240.6680) Optics at surfaces : Surface plasmons
(250.3750) Optoelectronics : Optical logic devices

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 25, 2012
Revised Manuscript: November 16, 2012
Manuscript Accepted: November 19, 2012
Published: December 3, 2012

Citation
Kunhua Wen, Lianshan Yan, Wei Pan, Bin Luo, Zhen Guo, and Yinghui Guo, "A four-port plasmonic quasi-circulator based on metal-insulator-metal waveguides," Opt. Express 20, 28025-28032 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28025


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003). [CrossRef] [PubMed]
  3. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B70(12), 125429 (2004). [CrossRef]
  4. Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express17(9), 7549–7554 (2009). [CrossRef] [PubMed]
  5. Y. H. Guo, L. S. Yan, W. Pan, B. Luo, K. H. Wen, Z. Guo, H. Y. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Opt. Express19(15), 13831–13838 (2011). [CrossRef] [PubMed]
  6. K. H. Wen, L. S. Yan, W. Pan, B. Luo, Z. Guo, and Y. H. Guo, “Wavelength demultiplexing structure based on plasmonic metal-insulator-metal waveguide,” J. Opt.14(7), 075001 (2012). [CrossRef]
  7. F. F. Hu, H. X. Yi, and Z. P. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett.36(8), 1500–1502 (2011). [CrossRef] [PubMed]
  8. C. Janke, J. G. Rivas, P. H. Bolivar, and H. Kurz, “All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures,” Opt. Lett.30(18), 2357–2359 (2005). [CrossRef] [PubMed]
  9. M. J. Kofke, D. H. Waldeck, Z. Fakhraai, S. Ip, and G. C. Walker, “The effect of periodicity on the extraordinary optical transmission of annular aperture arrays,” Appl. Phys. Lett.94(2), 023104 (2009). [CrossRef]
  10. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett.33(23), 2874–2876 (2008). [CrossRef] [PubMed]
  11. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005). [CrossRef] [PubMed]
  12. K. H. Wen, L. S. Yan, W. Pan, B. Luo, Z. Guo, Y. H. Guo, and X. G. Luo, “Spectral characteristics of plasmonic metal-insulator-metal waveguides with a tilted groove,” IEEE Photon. J.4(5), 1794–1800 (2012). [CrossRef]
  13. D. R. Matthews, H. D. Summers, K. Njoh, S. Chappell, R. Errington, and P. Smith, “Optical antenna arrays in the visible range,” Opt. Express15(6), 3478–3487 (2007). [CrossRef] [PubMed]
  14. S. Toroghi and P. G. Kik, “Cascaded field enhancement in plasmon resonant dimer nanoantennas compatible with two-dimensional nanofabrication methods,” Appl. Phys. Lett.101(1), 013116 (2012). [CrossRef]
  15. C. Huang, C. L. Du, and X. G. Luo, “A waveguide slit array antenna fabricated with subwavelength periodic grooves,” Appl. Phys. Lett.91(14), 143512 (2007). [CrossRef]
  16. S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett.92(1), 013103 (2008). [CrossRef]
  17. J. M. Steele, Z. W. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express14(12), 5664–5670 (2006). [CrossRef] [PubMed]
  18. T. Xu, Y. H. Zhao, D. C. Gan, C. T. Wang, C. L. Du, and X. G. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett.92(10), 101501 (2008). [CrossRef]
  19. A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express15(25), 16667–16680 (2007). [CrossRef] [PubMed]
  20. S. H. Fan, R. Baets, A. Petrov, Z. F. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on ‘Nonreciprocal light propagation in a silicon photonic circuit’,” Science335(6064), 729–733 (2012), arXiv:1110.2647 . [CrossRef] [PubMed]
  21. M. Kagami, H. Ito, G. Sugimoto, and Y. Miyazaki, “Simple structural quasi-optical circulator composed of tapering and bending waveguides,” Electron. Commun. Jpn. Part II Electron.83(7), 31–40 (2000). [CrossRef]
  22. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006). [CrossRef]
  23. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express16(4), 2676–2684 (2008). [CrossRef] [PubMed]
  24. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett.94(5), 053901 (2005). [CrossRef] [PubMed]
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  26. Y. H. Guo, L. S. Yan, W. Pan, B. Luo, K. H. Wen, Z. Guo, and X. G. Luo, “Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators,” Opt. Express20(22), 24348–24355 (2012). [CrossRef] [PubMed]
  27. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003). [CrossRef] [PubMed]
  28. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited