OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28049–28055

Increased sensitivity in fiber-based spectroscopy using carbon-coated fiber

Aziza Sudirman, Lars Norin, and Walter Margulis  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28049-28055 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2238 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Carbon-coated optical fibers are used here for reducing the luminescence background created by the primary-coating and thus increase the sensitivity of fiber-based spectroscopy systems. The 2-3 orders of magnitude signal-to-noise ratio improvement with standard telecom fibers is sufficient to allow for their use as Raman probes in the identification of organic solvents.

© 2012 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(260.3800) Physical optics : Luminescence
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:

Original Manuscript: October 31, 2012
Revised Manuscript: November 20, 2012
Manuscript Accepted: November 20, 2012
Published: December 3, 2012

Aziza Sudirman, Lars Norin, and Walter Margulis, "Increased sensitivity in fiber-based spectroscopy using carbon-coated fiber," Opt. Express 20, 28049-28055 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. A. Lindholm, J. Li, A. S. Hokansson, and J. Abramczyk, “Low speed carbon deposition process for hermetic optical fibers,” in Proceedings of International Wire and Cable Symposium (IWCS), 1999.
  2. J. Li, E. A. Lindholm, J. Horska, and J. Abramczyk, Advances in design and development of optical fibers for harsh environments” (Specialty Photonics, 1999). http://specialtyphotonics.com/about/white_papers/Harsh%20Environs.pdf
  3. A. Méndez and T. F. Morse, Specialty Optical Fibers Handbook (Academic Press, 2006), Chap. 14.
  4. D. A. Pinnow, G. D. Robertson, and J. A. Wysocki, “Reduction in static fatigue of silica fibers by hermetic jacketing,” Appl. Phys. Lett.34(1), 17–19 (1979). [CrossRef]
  5. A. Tomita and P. J. Lemaire, “Hydrogen-induced loss increases in germanium-doped single-mode fibers,” Electron. Lett.20, 512–514 (1985).
  6. A. Wax, M. G. Giacomelli, T. E. Matthews, M. T. Rinehart, F. E. Robles, and Y. Zhu, “Optical spectroscopy of biological cells,” Adv. Opt. Photon.4(3), 322–378 (2012). [CrossRef]
  7. U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt.8(1), 121–147 (2003). [CrossRef] [PubMed]
  8. T. F. Cooney, H. T. Skinner, and S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. Part I: model for liquids and transparent solids,” Appl. Spectrosc.50(7), 836–848 (1996). [CrossRef]
  9. M. Gallagher and U. Österberg, “Spectroscopy of defects in germanium-doped silica glass,” J. Appl. Phys.74(4), 2771–2778 (1993). [CrossRef]
  10. S. Kannan, M. E. Fineman, and G. H. Sigel., “Defect-related luminescent patterns in bulk silica and optical fibers stimulated by sub-band gap (248 nm) excimer laser radiation,” J. Lumin.60-61, 433–436 (1994). [CrossRef]
  11. T. F. Cooney, H. T. Skinner, and S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. Part II: tests of single-fiber, lensed, and flat- and bevel-tip multi-fiber probes,” Appl. Spectrosc.50(7), 849–860 (1996). [CrossRef]
  12. E. Schartner, H. Ebendorff-Heidepriem, and T. Monro, “Sensitive fluorescence detection with microstructured optical fibers,” Proc. SPIE8028, 802805 (2011). [CrossRef]
  13. J. Ma and Y. S. Li, “Fiber Raman background study and its application in setting up optical fiber Raman probes,” Appl. Opt.35(15), 2527–2533 (1996). [CrossRef] [PubMed]
  14. C. J. de Lima, S. Sathaiah, L. Silveira, R. A. Zângaro, and M. T. T. Pacheco, “Development of catheters with low fiber background signals for Raman spectroscopic diagnosis applications,” Artif. Organs24(3), 231–234 (2000). [CrossRef] [PubMed]
  15. M. L. Myrick and S. M. Angel, “Elimination of background in fiber-optic Raman measurements,” Appl. Spectrosc.44(4), 565–570 (1990). [CrossRef]
  16. R. B. Thompson, M. Levine, and L. Kondracki, “Component selection for fiber-optic fluorometry,” Appl. Spectrosc.44(1), 117–122 (1990). [CrossRef]
  17. S. Dai, J. E. Coffield, G. Mamantov, and J. P. Young, “Reduction of fused-silica-fiber Raman backgrounds in high-temperature fiber-optic Raman spectroscopy via the measurement of anti-Stokes Raman spectra,” Appl. Spectrosc.48(6), 766–768 (1994). [CrossRef]
  18. J. Nordborg and H. Karlsson, “Multiline DPSS lasers – a true Ar-ion alternative” (EuroPhotonics, June/July, 2004). http://www.cobolt.se/Filer/dokument/europhotonics_dual-calypso_july04_cobolt.pdf
  19. R. H. Stolen, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B1(4), 652–657 (1984). [CrossRef]
  20. G. H. Sigel and M. J. Marrone, “Photoluminescence in as-drawn and irradiated silica optical fibers: an assessment of the role of non-bridging oxygen defect centers,” J. Non-Cryst. Solids45(2), 235–247 (1981). [CrossRef]
  21. M. L. Myrick, S. M. Angel, and R. Desiderio, “Comparison of some fiber optic configurations for measurement of luminescence and Raman scattering,” Appl. Opt.29(9), 1333–1344 (1990). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited