OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28163–28170

Phase locking of lasers with self-stabilized minimal coupling

E. Ronen, A. A. Ishaaya, M. Nixon, A. Godel, A. A. Friesem, and N. Davidson  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28163-28170 (2012)
http://dx.doi.org/10.1364/OE.20.028163


View Full Text Article

Enhanced HTML    Acrobat PDF (1779 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel configuration for phase locking two ring lasers with self-stabilized minimal exchange of power between them is presented. We show experimentally that losses introduced between the lasers are self compensated in order to maintain minimal power exchange between them. The experimental results are in good agreement with numerical results.

© 2012 OSA

OCIS Codes
(140.3560) Lasers and laser optics : Lasers, ring
(140.3298) Lasers and laser optics : Laser beam combining

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 26, 2012
Revised Manuscript: August 23, 2012
Manuscript Accepted: August 25, 2012
Published: December 5, 2012

Citation
E. Ronen, A. A. Ishaaya, M. Nixon, A. Godel, A. A. Friesem, and N. Davidson, "Phase locking of lasers with self-stabilized minimal coupling," Opt. Express 20, 28163-28170 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28163


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer Verlag, 1984). [CrossRef]
  2. B. Wang, E. Mies, M. Minden, and A. Sanchez, “all-fiber 50 w coherently combined passive laser array,” Opt. Lett.34, 863–865 (2009). [CrossRef] [PubMed]
  3. F. Jeux, A. Desfarges-Berthelemot, V. Kermne, J. Guillot, and A. Barthelemy, “Passive coherent combining of lasers with phase-contrast filtering for enhanced efficiency,” App. Phys. B, 108, 1–7 (2012).
  4. M. Khajavikhan and J. Leger, “Modal analysis of path length sensitivity in superposition architectures for coherent laser beam combining,” IEEE Sel. Top. Quantum Electron.15, 281–290 (2009). [CrossRef]
  5. F. X. D’Amato, E. T. Siebert, and C. Roychoudhuri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” App. Phys. Lett.55, 816–818 (1989). [CrossRef]
  6. A. Ishaaya, N. Davidson, and A. Friesem, “Passive laser beam combining with intracavity interferometric combiners,” Sel. Top. Quantum Electron.15, 301–311 (2009). [CrossRef]
  7. C. J. Corcoran and F. Durville, “Experimental demonstration of a phase-locked laser array using a self-fourier cavity,” Appl. Phys. Lett.86, 201118 (2005).
  8. E. Ronen, M. Fridman, M. Nixon, A. A. Friesem, and N. Davidson, “Phase locking of lasers with intracavity polarization elements,” Opt. Lett.33, 2305–2307 (2008). [CrossRef] [PubMed]
  9. S. J. Augst, T. Y. Fan, and A. Sanchez, “Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers,” Opt. Lett.29, 474–476 (2004). [CrossRef] [PubMed]
  10. A. E. Siegman, Lasers (University Science Books, 1986).
  11. F. R. Faxvog, “Modes of a unidirectional ring laser,” Opt. Lett.5, 285–287 (1980). [CrossRef] [PubMed]
  12. J. A. Arnaud, “Degenerate optical cavities,” Appl. Opt.8, 189–195 (1969). [CrossRef] [PubMed]
  13. M. Nixon, M. Fridman, E. Ronen, I. Kanter, A.A Friesem, and N. Davidson, “Synchronized cluster formation in coupled laser networks,” Phys. Rev. Lett.106, 223–227 (2011). [CrossRef]
  14. J. Hohimer, G. Vawter, and D. Craft, “Unidirectional lasing in a ring semiconductor diode laser,” Appl. Phy. Lett.62, 1185–1187 (1993). [CrossRef]
  15. The attenuators are not optically flat so in addition to the absortion loss they add phase abberations to the donor mode which further reduces its overlap with the acceptor mode causing an additional loss that is not included in Fig. 3.
  16. L. Fabiny, P. Colet, R. Roy, and D. Lenstra, “Coherence and phase dynamics of spatially coupled solid-state lasers,” Phys. Rev. A47, 4287–4296 (1993). [CrossRef] [PubMed]
  17. M. Fridman, V. Eckhouse, N. Davidson, and A. A. Friesem, “effect of quantum noise on coupled laser oscillators,” Phys. Rev. A77061803 (2008). [CrossRef]
  18. I. Kanter, Y. Aviad, I. Igor, E. Cohen, and M. Rosenblu, “An optical ultrafast random bit generator,” Nat. Phys.4, 58–61 (2010). [CrossRef]
  19. S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, “Mode-coupling control in resonant devices: application to solid-state ring lasers,” Phys. Rev. Lett.97, 093902 (2006). [CrossRef] [PubMed]
  20. S. Schwartz, G. Feugnet, E. Lariontsev, and J.-P. Pocholle, “Oscillation regimes of a solid-state ring laser with active beat-note stabilization: From a chaotic device to a ring-laser gyroscope,” Phys. Rev. A76, 023807 (2007). [CrossRef]
  21. It should be noted that the usual solution for detuned coupled oscillators, where both oscillate with the mean frequency and the same intensity [16], does not yield a steady state solution for our coupled ring lasers. Experimentally there is always some finite breaking of symmetry between the two donor lasers that causes one of them to vansih.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited