OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28191–28199

Plasmonically enhanced Faraday effect in metal and ferrite nanoparticles composite precipitated inside glass

Seisuke Nakashima, Koji Sugioka, Katsuhisa Tanaka, Masahiro Shimizu, Yasuhiko Shimotsuma, Kiyotaka Miura, Katsumi Midorikawa, and Kohki Mukai  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28191-28199 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1738 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using femtosecond laser irradiation and subsequent annealing, nanocomposite structures composed of spinel-type ferrimagnetic nanoparticles (NPs) and plasmonic metallic NPs have been formed space-selectively within glass doped with both α-Fe2O3 and Al. The Faraday rotation spectra exhibit a distinct negative peak at around 400 nm, suggesting that the ferrimagnetic Faraday response is enhanced by the localized surface plasmon resonance (LSPR) due to metallic Al NPs. At the interfaces in the nanocomposites, the ferrimagnetism of magnetite NPs is directly coupled with the plasmon in the Al NPs. The control of the resonance wavelength of the magneto-optical peaks, namely, the size of plasmonic NPs has been demonstrated by changing the irradiation or annealing conditions.

© 2012 OSA

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(320.7090) Ultrafast optics : Ultrafast lasers
(350.3390) Other areas of optics : Laser materials processing
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: August 3, 2012
Revised Manuscript: October 9, 2012
Manuscript Accepted: October 12, 2012
Published: December 5, 2012

Seisuke Nakashima, Koji Sugioka, Katsuhisa Tanaka, Masahiro Shimizu, Yasuhiko Shimotsuma, Kiyotaka Miura, Katsumi Midorikawa, and Kohki Mukai, "Plasmonically enhanced Faraday effect in metal and ferrite nanoparticles composite precipitated inside glass," Opt. Express 20, 28191-28199 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. B. Scott, D. E. Lacklison, H. I. Ralph, and J. L. Page, “Magnetic circular dichroism and Faraday rotation spectra of Y3Fe5O12,” Phys. Rev. B12(7), 2562–2571 (1975). [CrossRef]
  2. P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett.9(4), 1644–1650 (2009). [CrossRef] [PubMed]
  3. L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. F. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett.11(3), 1237–1240 (2011). [CrossRef] [PubMed]
  4. C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009). [CrossRef] [PubMed]
  5. Y. Q. Li, Q. Zhang, A. V. Nurmikko, and S. H. Sun, “Enhanced magnetooptical response in dumbbell-like Ag-CoFe2O4 nanoparticle pairs,” Nano Lett.5(9), 1689–1692 (2005). [CrossRef] [PubMed]
  6. C. Wang, C. J. Xu, H. Zeng, and S. H. Sun, “Recent progress in syntheses and applications of dumbbell-like nanoparticles,” Adv. Mater. (Deerfield Beach Fla.)21(30), 3045–3052 (2009). [CrossRef] [PubMed]
  7. R. Fujikawa, A. V. Baryshev, J. Kim, H. Uchida, and M. Inoue, “Contribution of the surface plasmon resonance to optical and magneto-optical properties of a Bi: YIG-Au nanostructure,” J. Appl. Phys.103(7), 07D301-303 (2008). [CrossRef]
  8. S. Ozaki, H. Kura, H. Maki, and T. Sato, “Manipulation of Faraday rotation in Bi-substituted yttrium-iron garnet film using electromagnetic interaction between Au nanoparticles in two-dimensional array,” J. Appl. Phys.106(12), 123530 (2009). [CrossRef]
  9. Y. P. Lee, Y. V. Kudryavtsev, V. V. Nemoshkalenko, R. Gontarz, and J. Y. Rhee, “Magneto-optical and optical properties of Fe-rich Au-Fe alloy films near the fcc-bcc structural transformation region,” Phys. Rev. B67(10), 104424 (2003). [CrossRef]
  10. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  11. J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission,” Phys. Rev. Lett.85(14), 2921–2924 (2000). [CrossRef] [PubMed]
  12. T. Tamaki, W. Watanabe, H. Nagai, M. Yoshida, J. Nishii, and K. Itoh, “Structural modification in fused silica by a femtosecond fiber laser at 1558 nm,” Opt. Express14(15), 6971–6980 (2006). [CrossRef] [PubMed]
  13. Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003). [CrossRef] [PubMed]
  14. S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, and K. Hirao, “Enhanced magnetization and ferrimagnetic behavior of normal spinel ZnFe(2)O(4) thin film irradiated with femtosecond laser,” Appl. Phys., A Mater. Sci. Process.94(1), 83–88 (2009). [CrossRef]
  15. K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997). [CrossRef]
  16. K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process.81(1), 1–10 (2005). [CrossRef]
  17. K. Sugioka, Y. Hanada, and K. Midorikawa, “Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photon. Rev.4(3), 386–400 (2010). [CrossRef]
  18. J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett.81(16), 3040–3042 (2002). [CrossRef]
  19. J. R. Qiu, X. W. Jiang, C. S. Zhu, H. Inouye, J. H. Si, and K. Hirao, “Optical properties of structurally modified glasses doped with gold ions,” Opt. Lett.29(4), 370–372 (2004). [CrossRef] [PubMed]
  20. K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process.93(1), 183–188 (2008). [CrossRef]
  21. S. Nakashima, K. Sugioka, and K. Midorikawa, “Space-selective modification of the magnetic properties of transparent Fe3+-doped glass by femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process.104(3), 993–996 (2011). [CrossRef]
  22. A. Bishay, “Radiation induced color centers in multicomponent glasses,” J. Non-Cryst. Solids3(1), 54–114 (1970). [CrossRef]
  23. G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C112(36), 13958–13963 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited