OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28234–28248

Theoretical study on Brillouin fiber laser sensor based on white light cavity

Omer Kotlicki, Jacob Scheuer, and M.S. Shahriar  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28234-28248 (2012)
http://dx.doi.org/10.1364/OE.20.028234


View Full Text Article

Acrobat PDF (1350 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present and theoretically study a superluminal fiber laser based super-sensor employing Brillouin gain. The white light cavity condition is attained by introducing a phase shift component comprising an additional ring or Fabry-Perot cavity into the main cavity. By adjusting the parameters of the laser cavity and those of the phase component it is possible to attain sensitivity enhancement of many orders of magnitude compared to that of conventional laser sensors. The tradeoffs between the attainable sensitivity enhancement, the cavity dimensions and the impact of the cavity roundtrip loss are studied in details, providing a set of design rules for the optimization of the super-sensor.

© 2012 OSA

OCIS Codes
(280.3420) Remote sensing and sensors : Laser sensors
(290.5830) Scattering : Scattering, Brillouin

ToC Category:
Sensors

History
Original Manuscript: September 25, 2012
Revised Manuscript: October 28, 2012
Manuscript Accepted: October 29, 2012
Published: December 5, 2012

Citation
Omer Kotlicki, Jacob Scheuer, and M.S. Shahriar, "Theoretical study on Brillouin fiber laser sensor based on white light cavity," Opt. Express 20, 28234-28248 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28234


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. Hariharan, Basics of Interferometry, 2nd ed (Academic Press, 2006).
  2. G. Gauglitz, “Direct optical sensors: principles and selected applications,” Anal. Bioanal. Chem.381(1), 141–155 (2005). [CrossRef] [PubMed]
  3. B. J. Meers, “Recycling in laser-interferometric gravitational-wave detectors,” Phys. Rev. D Part. Fields38(8), 2317–2326 (1988). [CrossRef] [PubMed]
  4. G. Heinzel, K. A. Strain, J. Mizuno, K. D. Skeldon, B. Willke, W. Winkler, R. Schilling, A. Rudiger, and K. Danzmann, “Experimental demonstration of a suspended dual recycling interferometer for gravitational wave detection,” Phys. Rev. Lett.81(25), 5493–5496 (1998). [CrossRef]
  5. M. B. Gray, A. J. Stevenson, H.-A. Bachor, and D. E. McClelland, “Broadband and tuned signal recycling with a simple Michelson interferometer,” Appl. Opt.37(25), 5886–5893 (1998). [CrossRef] [PubMed]
  6. B. J. Meers, “The frequency response of interferometric gravitational wave detectors,” Phys. Lett. A142(8-9), 465–470 (1989). [CrossRef]
  7. P. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol.17(8), R93–R116 (2006). [CrossRef]
  8. A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem.125(2), 688–703 (2007). [CrossRef]
  9. R. Ulrich, “Fiber-optic rotation sensing with low drift,” Opt. Lett.5(5), 173–175 (1980). [CrossRef] [PubMed]
  10. R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Lett.8(12), 644–646 (1983). [CrossRef] [PubMed]
  11. A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rubenstein, and D. E. Pritchard, “Rotation sensing with an atom interferometer,” Phys. Rev. Lett.78(5), 760–763 (1997). [CrossRef]
  12. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett.99(13), 133601 (2007). [CrossRef] [PubMed]
  13. M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A75(5), 053807 (2007). [CrossRef]
  14. H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express18(17), 17658–17665 (2010). [CrossRef] [PubMed]
  15. J. Schaar, H. Yum, and M. S. Shahriar, “Theoretical Description and Design of a Fast-Light Enhanced Helium-Neon Ring-Laser Gyroscope,” Proc. SPIE 7949, Advances in Slow and Fast LightIV, 794914 (2011).
  16. S. Wise, G. Mueller, D. Reitze, D. B. Tanner, and B. F. Whiting, “Linewidth-broadened Fabry-Perot cavities within future gravitational wave detectors,” Class. Quantum Gravity21(5), S1031–S1036 (2004). [CrossRef]
  17. S. Wise, V. Quetschke, A. J. Deshpande, G. Mueller, D. H. Reitze, D. B. Tanner, B. F. Whiting, Y. Chen, A. Tünnermann, E. Kley, and T. Clausnitzer, “Phase effects in the diffraction of light: beyond the grating equation,” Phys. Rev. Lett.95(1), 013901 (2005). [CrossRef] [PubMed]
  18. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photon.2(1), 1–59 (2010). [CrossRef]
  19. M. O. Scully and W. E. Lamb, Laser Physics (Westview Press, Boulder, CO, 1974).
  20. T. A. Dorschner, H. A. Haus, M. Holz, I. W. Smith, and H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron.16(12), 1376–1379 (1980). [CrossRef]
  21. J. D. Cresser, W. H. Louisell, P. Meystre, W. Schleich, and M. O. Scully, “Quantum noise in ring laser gyros. I. Theoretical formulation of the problem,” Phys. Rev. A25(4), 2214–2225 (1982). [CrossRef]
  22. B. T. King, “Application of superresolution techniques to ring laser gyroscopes: exploring the quantum limit,” Appl. Opt.39(33), 6151–6157 (2000). [CrossRef] [PubMed]
  23. S. Huang, L. Thevenaz, K. Toyama, B. Y. Kim, and H. J. Shaw, “Optical Kerr-effect in fiber-optic Brillouin ring laser gyroscopes,” IEEE Photon. Technol. Lett.5(3), 365–367 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited