OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28292–28300

High Q H1 photonic crystal nanocavities with efficient vertical emission

Hiroyuki Takagi, Yasutomo Ota, Naoto Kumagai, Satomi Ishida, Satoshi Iwamoto, and Yasuhiko Arakawa  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28292-28300 (2012)
http://dx.doi.org/10.1364/OE.20.028292


View Full Text Article

Enhanced HTML    Acrobat PDF (1790 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on newly-designed H1-type photonic crystal (PhC) nanocavities that simultaneously exhibit high Q factors, small mode volumes, and high external coupling efficiencies (η) of light radiated above the PhC membrane. Dipole modes of the H1 PhC nanocavities, which are doubly-degenerate and orthogonally-polarized in theory, are investigated both by numerical calculations and experiments. Through modifying the sizes and positions of the air-holes near to the defect cavity, a Q factor of 62,000 is achieved, accompanied with an improved η of 0.38 (assuming an objective lens with a numerical aperture of 0.65). A further increase of η to more than 0.60 is observed at the expense of slight degradation of Q factor (down to 50,000). We further experimentally confirm the increase of both Q and η, using micro-photoluminescence measurements, and demonstrate high Q factors up to 25,000: the highest value ever reported for dipole modes in H1 PhC nanocavities.

© 2012 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: August 6, 2012
Revised Manuscript: October 28, 2012
Manuscript Accepted: October 31, 2012
Published: December 6, 2012

Citation
Hiroyuki Takagi, Yasutomo Ota, Naoto Kumagai, Satomi Ishida, Satoshi Iwamoto, and Yasuhiko Arakawa, "High Q H1 photonic crystal nanocavities with efficient vertical emission," Opt. Express 20, 28292-28300 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28292


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Painter, “Two-dimensional photonic band-gap defect mode laser,” Science284, 1819–1821 (1999). [CrossRef] [PubMed]
  2. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010). [CrossRef]
  3. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004). [CrossRef] [PubMed]
  4. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007). [CrossRef] [PubMed]
  5. A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, and Y. Arakawa, “Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness,” Opt. Express16, 448–455 (2008). [CrossRef] [PubMed]
  6. M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys.101, 073107 (2007). [CrossRef]
  7. H.-Y. Ryu, M. Notomi, and Y.-H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett.83, 4294–4296 (2003). [CrossRef]
  8. Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett.94, 033102 (2009). [CrossRef]
  9. T. Stace, G. Milburn, and C. Barnes, “Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity,” Phys. Rev. B67, 085317 (2003). [CrossRef]
  10. R. Johne, N. Gippius, G. Pavlovic, D. Solnyshkov, I. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett.100, 240404 (2008). [CrossRef] [PubMed]
  11. M. Larqué, T. Karle, I. Robert-Philip, and A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys.11, 033022 (2009). [CrossRef]
  12. I. J. Luxmoore, E. D. Ahmadi, A. M. Fox, M. Hugues, and M. S. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett.98, 041101 (2011). [CrossRef]
  13. I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett.100, 121116 (2012). [CrossRef]
  14. A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83, 4204–4207 (1999). [CrossRef]
  15. R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Large optical Stark shifts in semiconductor quantum dots coupled to photonic crystal cavities,” Appl. Phys. Lett.98, 121109 (2011). [CrossRef]
  16. S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B73, 235117 (2006). [CrossRef]
  17. N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B79, 041101 (2009). [CrossRef]
  18. N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B82, 075120 (2010). [CrossRef]
  19. S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express18, 16064–16073 (2010). [CrossRef] [PubMed]
  20. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express10, 670–684 (2002). [CrossRef] [PubMed]
  21. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003). [CrossRef] [PubMed]
  22. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13, 1202–14 (2005). [CrossRef] [PubMed]
  23. J. Huh, J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Nondegenerate monopole mode of single defect two-dimensional triangular photonic band-gap cavity,” J. Appl. Phys.92, 654–659 (2002). [CrossRef]
  24. We add a note that, with thicker PhC slab, further increase of cavity Q more than 79,000 by the negative Δ3 has been confirmed.
  25. K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoǧlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett.89, 041118 (2006). [CrossRef]
  26. T. Asano, B.-S. Song, and S. Noda, “Analysis of the experimental Q factors (∼ 1 million) of photonic crystal nanocavities,” Opt. Express14, 1996–2002 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited