OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28544–28556

Efficient second-harmonic generation of a broadband radiation by control of the temperature distribution along a nonlinear crystal

K. Regelskis, J. Želudevičius, N. Gavrilin, and G. Račiukaitis  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28544-28556 (2012)
http://dx.doi.org/10.1364/OE.20.028544


View Full Text Article

Acrobat PDF (1946 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an efficient technique for the second harmonic generation (SHG) of the broadband radiation based on the temperature gradient along a nonlinear crystal. The characteristics of Type I non-critical phase-matched SHG of broadband radiation in the LiB3O5 (LBO) crystal with the temperature gradient imposed along the crystal were investigated both numerically and experimentally. The frequency doubling efficiency of the broadband pulsed fiber laser radiation as high as 68% has been demonstrated.

© 2012 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(140.3515) Lasers and laser optics : Lasers, frequency doubled

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 10, 2012
Revised Manuscript: November 24, 2012
Manuscript Accepted: November 26, 2012
Published: December 10, 2012

Citation
K. Regelskis, J. Želudevičius, N. Gavrilin, and G. Račiukaitis, "Efficient second-harmonic generation of a broadband radiation by control of the temperature distribution along a nonlinear crystal," Opt. Express 20, 28544-28556 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28544


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Brown, “Increased spectral bandwidths in nonlinear conversion processes by use of multicrystal designs,” Opt. Lett.23(20), 1591–1593 (1998). [CrossRef] [PubMed]
  2. W. J. Alford and A. V. Smith, “Frequency-doubling broadband light in multiple crystals,” J. Opt. Soc. Am. B18(4), 515–523 (2001). [CrossRef]
  3. A. V. Smith, D. J. Armstrong, and W. J. Alford, “Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals,” J. Opt. Soc. Am. B15(1), 122–141 (1998). [CrossRef]
  4. O. E. Martinez, “Achromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron.25(12), 2464–2468 (1989). [CrossRef]
  5. B. A. Richman, S. E. Bisson, R. Trebino, E. Sidick, and A. Jacobson, “Efficient broadband second-harmonic generation by dispersive achromatic nonlinear conversion using only prisms,” Opt. Lett.23(7), 497–499 (1998). [CrossRef] [PubMed]
  6. K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the phase-matching bandwidth in quasi-phase-matched second-harmonic generation,” IEEE J. Quantum Electron.30(7), 1596–1604 (1994). [CrossRef]
  7. Y. L. Lee, Y. C. Noh, C. Jung, T. Yu, D. K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature-gradient-controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Express11(22), 2813–2819 (2003). [CrossRef] [PubMed]
  8. A. Tehranchi and R. Kashyap, “Design of novel unapodized and apodized step-chirped quasi-phase matched gratings for broadband frequency converters based on second harmonic generation,” J. Lightwave Technol.26(3), 343–349 (2008). [CrossRef]
  9. A. Tehranchi and R. Kashyap, “Engineered gratings for flat broadening of second-harmonic phase-matching bandwidth in MgO-doped lithium niobate waveguides,” Opt. Express16(23), 18970–18975 (2008). [CrossRef] [PubMed]
  10. R. A. Haas, “Influence of a constant temperature gradient on the spectral-bandwidth of second-harmonic generation in nonlinear crystals,” Opt. Commun.113(4-6), 523–529 (1995). [CrossRef]
  11. K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron.30(12), 2950–2952 (1994). [CrossRef]
  12. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, 1st ed. (Springer, 2005).
  13. X. Liu, L. J. Qian, and F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun.144(4-6), 265–268 (1997). [CrossRef]
  14. A. Dubietis, G. Tamosauskas, and A. Varanavicius, “Femtosecond third-harmonic pulse generation by mixing of pulses with different duration,” Opt. Commun.186(1-3), 211–217 (2000). [CrossRef]
  15. T. Zhang and M. Yonemura, “Pulse shaping of ultrashort laser pulses with nonlinear optical crystals,” Jpn. J. Appl. Phys.38(Part 1, No. 11), 6351–6358 (1999). [CrossRef]
  16. M. Sabaeian, L. Mousave, and H. Nadgaran, “Investigation of thermally-induced phase mismatching in continuous-wave second harmonic generation: a theoretical model,” Opt. Express18(18), 18732–18743 (2010). [CrossRef] [PubMed]
  17. S. Richard, “Second-harmonic generation in tapered optical fibers,” J. Opt. Soc. Am. B27(8), 1504–1512 (2010). [CrossRef]
  18. S. G. Grechin, V. G. Dmitriev, V. A. D'yakov, and V. I. Pryalkin, “Anomalous temperature-independent birefringence in a biaxial optical LBO crystal,” Quantum Electron.30(4), 285–286 (2000). [CrossRef]
  19. A. V. Smith, R. J. Gehr, and M. S. Bowers, “Numerical models of broad-bandwidth nanosecond optical parametric oscillators,” J. Opt. Soc. Am. B16(4), 609–619 (1999). [CrossRef]
  20. G. Arisholm, “General numerical methods for simulating second-order nonlinear interactions in birefringent media,” J. Opt. Soc. Am. B14(10), 2543–2549 (1997). [CrossRef]
  21. A. V. Smith, “How to select nonlinear crystals and model their performance using SNLO software,” Proc. SPIE3928, 62–69 (2000). [CrossRef]
  22. Q. Liu, X. Yan, M. Gong, X. Fu, and D. Wang, “103 W high beam quality green laser with an extra- cavity second harmonic generation,” Opt. Express16(19), 14335–14340 (2008). [CrossRef] [PubMed]
  23. K. H. Hong, C. J. Lai, A. Siddiqui, and F. X. Kärtner, “130-W picosecond green laser based on a frequency-doubled hybrid cryogenic Yb:YAG amplifier,” Opt. Express17(19), 16911–16919 (2009). [CrossRef] [PubMed]
  24. R. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron.20(10), 1178–1187 (1984). [CrossRef]
  25. C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, and S. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B6(4), 616–621 (1989). [CrossRef]
  26. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997). [CrossRef]
  27. S. M. Saltiel, K. Koynov, B. Agate, and W. Sibbett, “Second-harmonic generation with focused beams under conditions of large group-velocity mismatch,” J. Opt. Soc. Am. B21(3), 591–598 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited