OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28586–28593

Chromatic aberration of light focusing in hyperbolic anisotropic metamaterial made of metallic slit array

Kai Guo, Jianlong Liu, Yan Zhang, and Shutian Liu  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28586-28593 (2012)
http://dx.doi.org/10.1364/OE.20.028586


View Full Text Article

Enhanced HTML    Acrobat PDF (1135 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dispersion of a hyperbolic anisotropic metamaterial (HAM) and the chromatic aberration of light focusing in this kind of HAM are studied. The HAM is formed by alternately stacking metal and dielectric layers. The rules of materials and filling factors affecting the optical property of HAM are given. The chromatic aberration of light focusing is demonstrated both theoretically and numerically. By comparing the theory with the simulation results, the factors influencing the focal length, including the heat loss of material and low spatial frequency modes, are discussed. The investigation emphasizes the anomalous properties, such as chromatic aberration and low spatial frequency modes influencing focus position, of HAM compared with that in conventional lens. Based on the analysis, the possibility of using HAM to focus light with two different wavelengths at the same point is studied.

© 2012 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Metamaterials

History
Original Manuscript: November 5, 2012
Revised Manuscript: December 1, 2012
Manuscript Accepted: December 3, 2012
Published: December 17, 2012

Citation
Kai Guo, Jianlong Liu, Yan Zhang, and Shutian Liu, "Chromatic aberration of light focusing in hyperbolic anisotropic metamaterial made of metallic slit array," Opt. Express 20, 28586-28593 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28586


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  3. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007). [CrossRef] [PubMed]
  4. L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett. 103(3), 033902(2009). [CrossRef] [PubMed]
  5. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008). [CrossRef] [PubMed]
  6. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006). [CrossRef]
  7. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007). [CrossRef] [PubMed]
  8. X. Fan, G. P. Wang, J. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006). [CrossRef] [PubMed]
  9. C. Ma, M. A. Escobar, and Z. Liu, “Extraordinary light focusing and Fourier transform properties of gradient-index metalenses,” Phys. Rev. B 84(19), 195142 (2011). [CrossRef]
  10. S. Thongrattanasiri and V. A. Podolskiy, “Hypergratings: nanophotonics in planar anisotropic metamaterials,” Opt. Lett. 34(7), 890–892 (2009). [CrossRef] [PubMed]
  11. G. Ren, Z. Lai, C. Wang, Q. Feng, L. Liu, K. Liu, and X. Luo, “Subwavelength focusing of light in the planar anisotropic metamaterials with zone plates,” Opt. Express 18(17), 18151–18157 (2010). [CrossRef] [PubMed]
  12. G. Li, J. Li, and K. W. Cheah, “Subwavelength focusing using a hyperbolic medium with a single slit,” Appl. Opt. 50(31), G27–G30 (2011). [CrossRef] [PubMed]
  13. C. Wang, Y. Zhao, D. Gan, C. Du, and X. Luo, “Subwavelength imaging with anisotropic structure comprising alternately layered metal and dielectric films,”Opt. Express 16(6), 4217–4227 (2008). [CrossRef] [PubMed]
  14. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74(7), 075103 (2006). [CrossRef]
  15. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15(24), 15886–15891 (2007). [CrossRef] [PubMed]
  16. E. Palik, ed., “Handbook of optical constants of solids,” (AP, 1985).
  17. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  18. Y. Gao, J. Liu, X. Zhang, Y. Wang, Y. Song, S. Liu, and Y. Zhang, “Analysis of focal-shift effect in planar metallic nanoslit lenses,” Opt. Express 20(2), 1320–1329 (2012). [CrossRef] [PubMed]
  19. J. T. Costa and M. G. Silveirinha, “Achromatic lens based on a nanowire material with anomalous dispersion,” Opt. Express 20(13), 13915–13922 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited