OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28594–28602

Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band

Ilya Goykhman, Boris Desiatov, Jacob Khurgin, Joseph Shappir, and Uriel Levy  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28594-28602 (2012)
http://dx.doi.org/10.1364/OE.20.028594


View Full Text Article

Enhanced HTML    Acrobat PDF (2857 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate an on-chip compact and simple to fabricate silicon Schottky photodetector for telecom wavelengths operating on the basis of internal photoemission process. The device is realized using CMOS compatible approach of local-oxidation of silicon, which enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. The photodetector demonstrates enhanced internal responsivity of 12.5mA/W for operation wavelength of 1.55µm corresponding to an internal quantum efficiency of 1%, about two orders of magnitude higher than our previously demonstrated results [22]. We attribute this improved detection efficiency to the presence of surface roughness at the boundary between the materials forming the Schottky contact. The combination of enhanced quantum efficiency together with a simple fabrication process provides a promising platform for the realization of all silicon photodetectors and their integration with other nanophotonic and nanoplasmonic structures towards the construction of monolithic silicon opto-electronic circuitry on-chip.

© 2012 OSA

OCIS Codes
(040.6040) Detectors : Silicon
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Detectors

History
Original Manuscript: November 5, 2012
Revised Manuscript: November 28, 2012
Manuscript Accepted: November 29, 2012
Published: December 10, 2012

Citation
Ilya Goykhman, Boris Desiatov, Jacob Khurgin, Joseph Shappir, and Uriel Levy, "Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band," Opt. Express 20, 28594-28602 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28594


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics3(1), 59–63 (2009). [CrossRef]
  2. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010). [CrossRef]
  3. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010). [CrossRef] [PubMed]
  4. A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett.70(3), 303–305 (1997). [CrossRef]
  5. Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-si avalanche photodiodes with low-noise performances,” IEEE Photon. Technol. Lett.14(11), 1593–1595 (2002). [CrossRef]
  6. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 µm wavelength for autocorrelation measurements,” Appl. Phys. Lett.81(7), 1323–1325 (2002). [CrossRef]
  7. T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett.96, 101103 (2010).
  8. J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett.86(24), 241103 (2005).
  9. J. J. Ackert, M. Fiorentino, D. F. Logan, R. G. Beausoleil, P. E. Jessop, and A. P. Knights, “Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth,” J. Nanophotonics5(1), 059507 (2011).
  10. K. Preston, Y. H. Lee, M. Zhang, and M. Lipson, “Waveguide-integrated telecom-wavelength photodiode in deposited silicon,” Opt. Lett.36(1), 52–54 (2011). [CrossRef] [PubMed]
  11. H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 µm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett.95(17), 171111 (2009).
  12. M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express20(11), 12599 (2012).
  13. D. W. Peters, “An infrared detector utilizing internal photoemission,” Proc. IEEE55(5), 704–705 (1967). [CrossRef]
  14. S. M. Sze and K. Ng, Kwok, “Physics of Semiconductor Devices,“ Wiley, New York (2006).
  15. S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).
  16. M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
  17. J. E. Sipe and J. Becher, “Surface-plasmon-assisted photoemission,” J. Opt. Soc. Am.71(10), 1286–1288 (1981). [CrossRef]
  18. J. G. Endriz, “Surface waves and grating-tuned photocathodes,” Appl. Phys. Lett.25(5), 261–262 (1974).
  19. Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag-Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett.95(24), 241106 (2009).
  20. A. Akbari and P. Berini, “Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide,” Appl. Phys. Lett.95(2), 021104 (2009).
  21. A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide schottky detector,” Opt. Express18(8), 8505–8514 (2010). [CrossRef] [PubMed]
  22. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon Surface-Plasmon schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011). [CrossRef] [PubMed]
  23. T. Aihara, K. Nakagawa, M. Fukuhara, Y. L. Yu, K. Yamaguchi, and M. Fukuda, “Optical frequency signal detection through surface plasmon polaritons,” Appl. Phys. Lett.99(4), 043111 (2011).
  24. M. Fukuda, T. Aihara, K. Yamaguchi, Y. Y. Ling, K. Miyaji, and M. Tohyama, “Light detection enhanced by surface plasmon resonance in metal film,” Appl. Phys. Lett.96(15), 153107 (2010).
  25. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011). [CrossRef] [PubMed]
  26. S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett.100(6), 061109 (2012).
  27. B. Desiatov, I. Goykhman, and U. Levy, “Demonstration of submicron square-like silicon waveguide using optimized LOCOS process,” Opt. Express18, 18592–18597 (2010).
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  29. H. Norde, “A modified forward I-V plot for schottky diodes with high series resistance,” J. Appl. Phys.50(7), 5052–5053 (1979). [CrossRef]
  30. S. K. Cheung and N. W. Cheung, “Extraction of schottky diode parameters from forward current-voltage characteristics,” Appl. Phys. Lett.49(2), 85–87 (1986). [CrossRef]
  31. K. Sato and Y. Yasumura, “Study of forward I-V plot for schottky diodes with high series resistance,” J. Appl. Phys.58(9), 3655–3657 (1985). [CrossRef]
  32. H. C. Card, “Aluminum-Silicon schottky barriers and ohmic contacts in integrated circuits,” IEEE Trans. Electron. Dev.23(6), 538–544 (1976). [CrossRef]
  33. Z. Horváth, M. Ádám, I. Szabó, M. Serényi, and V. Van Tuyen, “Modification of Al/Si interface and schottky barrier height with chemical treatment,” Appl. Surf. Sci.190(1-4), 441–444 (2002). [CrossRef]
  34. V. M. Shalaev, C. Douketis, J. T. Stuckless, and M. Moskovits, “Light-induced kinetic effects in solids,” Phys. Rev. B53(17), 11388–11402 (1996).
  35. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett.63(16), 2174–2176 (1993). [CrossRef]
  36. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004). [CrossRef]
  37. R. H. Horng, S. H. Huang, C. C. Yang, and D. S. Wuu, “Efficiency Improvement of GaN-Based LEDs with ITO Texturing Window Layers Using Natural Lithography,” IEEE J. Sel. Top. Quantum Electron.12(6), 1196–1201 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited