OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28717–28723

The case for using gap plasmon-polaritons in second-order optical nonlinear processes

Jacob B. Khurgin and Greg Sun  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28717-28723 (2012)
http://dx.doi.org/10.1364/OE.20.028717


View Full Text Article

Enhanced HTML    Acrobat PDF (1049 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that using metal-insulator-metal (MIM) waveguides to carry out various second-order nonlinear optical processes not only provides highly desired tight optical confinement but also facilitates the phase-matching due to their inherently large anisotropy. This fact allows one to take advantage of otherwise inaccessible large nonlinear susceptibilities of the cubic zinc blende semiconductors. Our efficiency estimates show that since only the longer wavelength infra-red radiation propagates in the surface-plasmon-polariton (SPP) mode, the losses in the metal, while significant, do not preclude development of highly compact nonlinear optical devices on this integration-friendly semiconductor platform.

© 2012 OSA

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.4223) Nonlinear optics : Nonlinear wave mixing
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 2, 2012
Revised Manuscript: November 30, 2012
Manuscript Accepted: November 30, 2012
Published: December 10, 2012

Citation
Jacob B. Khurgin and Greg Sun, "The case for using gap plasmon-polaritons in second-order optical nonlinear processes," Opt. Express 20, 28717-28723 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28717


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011). [CrossRef] [PubMed]
  3. J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett.96(18), 181102 (2010). [CrossRef]
  4. F. Wang and Y. R. Shen, “General properties of local Plasmons in metal nanostructures,” Phys. Rev. Lett.97(20), 206806 (2006). [CrossRef] [PubMed]
  5. J. B. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett.99(21), 211106 (2011). [CrossRef]
  6. Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11(12), 5519–5523 (2011). [CrossRef] [PubMed]
  7. N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett.33(17), 1975–1977 (2008). [CrossRef] [PubMed]
  8. S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt.11(11), 114030 (2009). [CrossRef]
  9. N. I. Zheludev and V. I. Emel’yanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A, Pure Appl. Opt.6(1), 26–28 (2004). [CrossRef]
  10. A. Slablab, L. Le Xuan, M. Zielinski, Y. de Wilde, V. Jacques, D. Chauvat, and J.-F. Roch, “Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres,” Opt. Express20(1), 220–227 (2012). [CrossRef] [PubMed]
  11. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev.174(3), 813–822 (1968). [CrossRef]
  12. F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett.14(25), 1029–1031 (1965). [CrossRef]
  13. F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett.14(25), 1029–1031 (1965). [CrossRef]
  14. S. S. Jha, “Nonlinear optical reflection from a metal surface,” Phys. Rev. Lett.15(9), 412–414 (1965). [CrossRef]
  15. S. S. Jha, “Theory of optical harmonic generation at a metal surface,” Phys. Rev.140(6A), A2020–A2030 (1965). [CrossRef]
  16. F. H. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009). [CrossRef]
  17. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B3(12), 1647–1655 (1986). [CrossRef]
  18. H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in silver films,” Phys. Rev. Lett.33(26), 1531–1534 (1974). [CrossRef]
  19. R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun.248(1-3), 249–256 (2005). [CrossRef]
  20. K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett.7(2), 254–258 (2007). [CrossRef] [PubMed]
  21. N. B. Grosse, J. Heckmann, and U. Woggon, “Nonlinear Plasmon-Photon Interaction Resolved by k-Space Spectroscopy,” Phys. Rev. Lett.108(13), 136802 (2012). [CrossRef] [PubMed]
  22. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  23. K.-Y. Jung, F. L. Teixeira, and R. M. Reano, “Surface plasmon coplanar waveguides: Mode characteristics and mode conversion losses,” IEEE Photon. Technol. Lett.21(10), 630–632 (2009). [CrossRef]
  24. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience New York 2003).
  25. X. Yu, L. Scaccabarozzi, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Efficient continuous wave second harmonic generation pumped at 1.55 μm in quasi-phasematched AlGaAs waveguides,” Opt. Express13(26), 10742–10748 (2005). [CrossRef]
  26. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett.71(25), 3622–3624 (1997). [CrossRef]
  27. J. B. Khurgin, M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Suspended AlGaAs waveguides for tunable difference frequency generation in mid-infrared,” Opt. Lett.33(24), 2904–2906 (2008). [CrossRef] [PubMed]
  28. K. Kim, S. Lee, and P. Delfyett, “1.4kW high peak power generation from an all semiconductor mode-locked master oscillator power amplifier system based on eXtreme Chirped Pulse Amplification(X-CPA),” Opt. Express13(12), 4600–4606 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited