OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28734–28741

Monolithic InP strictly non-blocking 8×8 switch for high-speed WDM optical interconnection

Myung-Joon Kwack, Takuo Tanemura, Akio Higo, and Yoshiaki Nakano  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28734-28741 (2012)
http://dx.doi.org/10.1364/OE.20.028734


View Full Text Article

Enhanced HTML    Acrobat PDF (3283 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A strictly non-blocking 8 × 8 switch for high-speed WDM optical interconnection is realized on InP by using the phased-array scheme for the first time. The matrix switch architecture consists of over 200 functional devices such as star couplers, phase-shifters and so on without any waveguide cross-section. We demonstrate ultra-broad optical bandwidth covering the entire C-band through several Input/Output ports combination with extinction ratio performance of more than 20dB. Also, nanoseconds reconfiguration time was successfully achieved by dynamic switching experiment. Error-free transmission was verified for 40-Gbps (10-Gbps × 4ch) WDM signal.

© 2012 OSA

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(250.5300) Optoelectronics : Photonic integrated circuits
(250.6715) Optoelectronics : Switching

ToC Category:
Waveguide and Optoelectronic Devices

History
Original Manuscript: October 16, 2012
Manuscript Accepted: November 16, 2012
Published: December 11, 2012

Virtual Issues
European Conference on Optical Communication 2012 (2012) Optics Express

Citation
Myung-Joon Kwack, Takuo Tanemura, Akio Higo, and Yoshiaki Nakano, "Monolithic InP strictly non-blocking 8×8 switch for high-speed WDM optical interconnection," Opt. Express 20, 28734-28741 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28734


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Google - Data centers, http://www.google.com/about/datacenters .
  2. Microsoft – Server & Cloud, http://www.microsoft.com/en-us/server-cloud/default.aspx .
  3. C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: what’s needed for datacenter network operations,” IEEE Commun. Mag.48(7), 32–39 (2010). [CrossRef]
  4. N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” in SIGCOMM '10 Proceedings of the ACM SIGCOMM 2010 Conference on SIGCOMM (ACM, 2010), pp. 339–350.
  5. G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. E. Ng, M. Kozuch, and M. Ryan, “c-Through: part-time optics in data centers,” in SIGCOMM '10 Proceedings of the ACM SIGCOMM 2010 conference on SIGCOMM (ACM, 2010), pp. 327–338.
  6. X. Ye, P. Mejia, Y. Yin, R. Proietti, S. J. B. Yoo, and V. Akella, “DOS—a scalable optical switch for datacenters,” in ANCS '10 Proceedings of the 6th ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ACS, 2010), article 24.
  7. A. Vahdat, H. Liu, X. Zhao, and C. R. Johnson, “The emerging optical data center,” in Proceedings of Optical Fiber Communication Conference (OFC, 2011), paper OTuH2.
  8. N. Farrington, Y. Fainman, H. Liu, G. Papen, and A. Vahdat, “Hardware requirements for optical circuit switched data center networks,” in Proceedings of Optical Fiber Communication Conference (OFC, 2011), Paper OTuH3.
  9. A. Wonfor, H. Wang, R. V. Penty, and I. H. White, “Large port count high-speed optical switch fabric for use within datacenters,” J. Opt. Commun. Netw.3(8), A32–A39 (2011). [CrossRef]
  10. S. C. Nicholes, M. L. Mašanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “An 8×8 InP monolithic tunable optical router (MOTOR) packet forwarding chip,” J. Lightwave Technol.28(4), 641–650 (2010). [CrossRef]
  11. H. Liu, C. F. Lam, and C. R. Johnson, “Scaling optical interconnects in datacenter networks opportunities and challenges for WDM,” in 18th IEEE Symposium on High Performance Interconnects (IEEE, 2010), pp. 113–116.
  12. S. Di Lucente, N. Calabretta, J. A. C. Resing, and H. J. S. Dorren, “Scaling low- latency optical packet switches to a thousand ports,” J. Opt. Commun. Netw.4(9), A17–A28 (2012). [CrossRef]
  13. C. R. Doerr and C. Dragone, “Proposed optical cross connect using a planar arrangement of beam steerers,” IEEE Photon. Technol. Lett.11(2), 197–199 (1999). [CrossRef]
  14. I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Monolithically integrated InP 1×16 optical switch with wavelength-insensitive operation,” IEEE Photon. Technol. Lett.22(3), 143–145 (2010). [CrossRef]
  15. I. M. Soganci, T. Tanemura, and Y. Nakano, “Integrated phased-array switches for large-scale photonic routing on chip,” Laser Photon. Rev.6(4), 549–563 (2012). [CrossRef]
  16. L. H. Spiekman, Y. S. Oei, E. G. Metaal, F. H. Green, I. Moerman, and M. K. Smit, “Extremely small multimode interference couplers and ultrashort bends on InP by deep etching,” IEEE Photon. Technol. Lett.6(8), 1008–1010 (1994). [CrossRef]
  17. Chiral photonics – sport size converting interconnect, http://www.chiralphotonics.com/Web/coupler.html .
  18. H. D. Thacker, I. Shubin, Y. Luo, J. Costa, J. Lexau, X. Zheng, G. Li, J. Yao, J. Li, D. Patil, F. Liu, R. Ho, D. Feng, M. Asghari, T. Pinguet, K. Raj, J. G. Mitchell, A. V. Krishnamoorthy, and J. E. Cunningham, “Hybrid integration of silicon nanophotonics with 40nm-CMOS VLSI drivers and receivers,” in proceeding of IEEE 61st Electronic Components and Technology Conference (ECTC, 2011), pp. 829–835.
  19. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited