OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28792–28800

Mode-converters for rectangular-core fiber amplifiers to achieve diffraction-limited power scaling

Arun Kumar Sridharan, Paul H. Pax, John E. Heebner, Derrek R. Drachenberg, J. Paul Armstrong, and Jay W. Dawson  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28792-28800 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1845 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A rectangular-core (ribbon) fiber that guides and amplifies a single higher-order-mode (HOM) can potentially scale to much higher average powers than what is possible in traditional circular-core large-mode-area fibers. Such an amplifier would require mode-conversion at the input to enable interfacing with seed sources that typically output TEM00 mode radiation and at the output to generate diffraction-limited radiation for end-user applications. We present the first simulation and experimental results of a mode conversion technique that uses two diffractive-optic-elements in conjugate Fourier planes to convert a diffraction limited TEM00 mode to the HOM of a ribbon fiber. Mode-conversion-efficiency is approximately 84% and can theoretically approach 100%. We also demonstrate a mode-converter system that converts a single HOM of a ribbon fiber back to a diffraction-limited TEM00 mode. Conversion efficiency is a record 80.5%.

© 2012 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2400) Fiber optics and optical communications : Fiber properties
(100.3190) Image processing : Inverse problems
(060.3510) Fiber optics and optical communications : Lasers, fiber
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 27, 2012
Manuscript Accepted: October 1, 2012
Published: December 12, 2012

Arun Kumar Sridharan, Paul H. Pax, John E. Heebner, Derrek R. Drachenberg, J. Paul Armstrong, and Jay W. Dawson, "Mode-converters for rectangular-core fiber amplifiers to achieve diffraction-limited power scaling," Opt. Express 20, 28792-28800 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005). [CrossRef]
  2. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express16, 13240–13266 (2008). [CrossRef] [PubMed]
  3. R. J. Beach, M. D. Feit, R. H. Page, L. D. Brasure, R. Wilcox, and S. A. Payne, “Scalable antiguided ribbon laser,” J. Opt. Soc. Am. B19, 1521–1534 (2002). [CrossRef]
  4. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.2, 429–448 (2008). [CrossRef]
  5. A. L. Bullington, P. H. Pax, A. K. Sridharan, J. E. Heebner, M. J. Messerly, and J. W. Dawson, “Mode conversion in rectangular-core optical fibers,” Appl. Opt.51, 84–88 (2012). [CrossRef] [PubMed]
  6. A. A. Ishaaya, G. Machavariani, N. Davidson, and A. A. Friesem, “Conversion of a high-order mode beam into a nearly gaussian beam by use of a single interferometric element,” Opt. Lett.28, 504–506 (2003). [CrossRef] [PubMed]
  7. M.-Y. Chen and J. Zhou, “Mode converter based on mode coupling in an asymmetric dual-core photonic crystal fibre,” Journal of Optics A: Pure and Appl. Opt.10, 115304–115307 (2008). [CrossRef]
  8. N. Davidson, A. A. Friesem, and E. Hasman, “Diffractive elements for annular laser beam transformation,” Appl. Phys. Lett.61, 381–383 (1992). [CrossRef]
  9. A. E. Siegman, “Binary phase plates cannot improve laser beam quality,” Opt. Lett.18, 675–677 (1993). [CrossRef] [PubMed]
  10. N. Lindlein, G. Leuchs, and S. Ramachandran, “Achieving gaussian outputs from large-mode-area higher-order-mode fibers,” Appl. Opt.46, 5147–5157 (2007). [CrossRef] [PubMed]
  11. R. Oron, N. Davidson, and A. A. Friesem, “Continuous-phase elements can improve laser beam quality,” Opt. Lett.25, 939–941 (2000). [CrossRef]
  12. G. Hergenhan, B. Lucke, and U. Brauch, “Coherent coupling of vertical-cavity surface-emitting laser arrays and efficient beam combining by diffractive optical elements:concept and experimental verification,” Appl. Opt.42, 1667–1680 (2003). [CrossRef] [PubMed]
  13. M. Khajavikhan, A. Hoyer-Leitzel, and J. R. Leger, “Efficient conversion of light from sparse laser arrays into single-lobed far field using phase structures,” Opt. Lett.33, 2377–2379 (2008). [CrossRef] [PubMed]
  14. J. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt.21, 2758–2769 (1982). [CrossRef] [PubMed]
  15. G. Zhou, Y. Chen, Z. Wang, and H. Song, “Genetic local search algorithm for optimization design of diffractive optical elements,” Appl. Opt.38, 4281–4290 (1999). [CrossRef]
  16. J. M. Herrera-Fernandez and L. M. Sanchez-Brea, “Double diffractive optical element system for near-field shaping,” Appl. Opt.50, 4587–4593 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited