OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28846–28854

Suppression of stimulated Brillouin scattering in all-solid chalcogenide-tellurite photonic bandgap fiber

Tonglei Cheng, Meisong Liao, Weiqing Gao, Zhongchao Duan, Takenobu Suzuki, and Yasutake Ohishi  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28846-28854 (2012)
http://dx.doi.org/10.1364/OE.20.028846


View Full Text Article

Enhanced HTML    Acrobat PDF (1808 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new way to suppress stimulated Brillouin scattering by using an all-solid chalcogenide-tellurite photonic bandgap fiber is presented in the paper. The compositions of the chalcogenide and the tellurite glass are As2Se3 and TeO2-ZnO-Li2O-Bi2O3. The light and the acoustic wave are confined in the fiber by photonic bandgap and acoustic bandgap mechanism, respectively. When the pump wavelength is within the photonic bandgap and the acoustic wave generated by the pump light is outside the acoustic bandgap, the interaction between the optical and the acoustic modes is very weak, thus stimulated Brillouin scattering is suppressed in the photonic bandgap fiber.

© 2012 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(290.5900) Scattering : Scattering, stimulated Brillouin
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 27, 2012
Revised Manuscript: November 2, 2012
Manuscript Accepted: November 16, 2012
Published: December 12, 2012

Citation
Tonglei Cheng, Meisong Liao, Weiqing Gao, Zhongchao Duan, Takenobu Suzuki, and Yasutake Ohishi, "Suppression of stimulated Brillouin scattering in all-solid chalcogenide-tellurite photonic bandgap fiber," Opt. Express 20, 28846-28854 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28846


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett.21(11), 539–541 (1972). [CrossRef]
  2. J. O. White, A. Vasilyev, J. P. Cahill, N. Satyan, O. Okusaga, G. Rakuljic, C. E. Mungan, and A. Yariv, “Suppression of stimulated Brillouin scattering in optical fibers using a linearly chirped diode laser,” Opt. Express20(14), 15872–15881 (2012). [CrossRef] [PubMed]
  3. R. Parvizi, H. Arof, N. M. Ali, H. Ahmad, and S. W. Harun, “0.16 nm spaced multi-wavelength Brillouin fiber laser in a figure-of-eight configuration,” Opt. Laser Technol.43(4), 866–869 (2011). [CrossRef]
  4. R. K. Yamashita, W. W. Zou, Z. Y. He, and K. Hotate, “Measurement Range Elongation Based on Temporal Gating in Brillouin Optical Correlation Domain Distributed Simultaneous Sensing of Strain and Temperature,” IEEE Photon. Technol. Lett.24(12), 1006–1008 (2012). [CrossRef]
  5. R. Pant, A. Byrnes, C. G. Poulton, E. B. Li, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett.37(5), 969–971 (2012). [CrossRef] [PubMed]
  6. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express18(21), 22599–22613 (2010). [CrossRef] [PubMed]
  7. W. Li, N. H. Zhu, and L. X. Wang, “Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution,” Opt. Lett.37(2), 166–168 (2012). [CrossRef] [PubMed]
  8. M. Takahashi, J. Hiroishi, M. Tadakuma, and T. Yagi, “Improvement of FWM conversion efficiency by SBS-suppressed highly nonlinear dispersion-decreasing fiber with a strain distribution,” in Proc. ECOC (2008).
  9. H. Lee and G. P. Agrawal, “Suppression of stimulated Brillouin scattering in optical fibers using fiber Bragg gratings,” Opt. Express11(25), 3467–3472 (2003). [CrossRef] [PubMed]
  10. R. Parvizi, S. W. Harun, N. S. Shahabuddin, Z. Yusoff, and H. Ahmad, “Multi-wavelength bismuth-based erbium-doped fiber laser based on four-wave mixing effect in photonic crystal fiber,” Opt. Laser Technol.42(8), 1250–1252 (2010). [CrossRef]
  11. K. Shiraki, M. Ohashi, and M. Tateda, “Performance of strain-free stimulated Brillouin scattering suppression fiber,” J. Lightwave Technol.14(4), 549–554 (1996). [CrossRef]
  12. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol.19(11), 1691–1697 (2001). [CrossRef]
  13. M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express15(13), 8290–8299 (2007). [CrossRef] [PubMed]
  14. P. D. Dragic, C. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Proc. CLEO (2005).
  15. K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fibre by changing the core radius,” Electron. Lett.31(8), 668–669 (1995). [CrossRef]
  16. C. K. Jen, J. E. B. Oliveira, N. Goto, and K. Abe, “Role of guided acoustic wave properties in single-mode optical fibre design,” Electron. Lett.24(23), 1419–1420 (1988). [CrossRef]
  17. T. Sakamoto, T. Matsui, K. Shiraki, and T. Kurashima, “SBS Suppressed Fiber With Hole-Assisted Structure,” J. Lightwave Technol.27(20), 4401–4406 (2009). [CrossRef]
  18. L. F. Zou, X. Y. Bao, and L. Chen, “Brillouin scattering spectrum in photonic crystal fiber with a partially germanium-doped core,” Opt. Lett.28(21), 2022–2024 (2003). [CrossRef] [PubMed]
  19. P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecher, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys.2(6), 388–392 (2006). [CrossRef]
  20. R. Cherif, M. Zghal, and L. Tartara, “Characterization of stimulated Brillouin scattering in small core microstructured chalcogenide fiber,” Opt. Commun.285(3), 341–346 (2012). [CrossRef]
  21. G. S. Qin, A. Mori, and Y. Ohishi, “Brillouin lasing in a single-mode tellurite fiber,” Opt. Lett.32(15), 2179–2181 (2007). [CrossRef] [PubMed]
  22. C. Florea, M. Bashkansky, Z. Dutton, J. Sanghera, P. Pureza, and I. Aggarwal, “Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers,” Opt. Express14(25), 12063–12070 (2006). [CrossRef] [PubMed]
  23. K. S. Abedin, “Stimulated Brillouin scattering in single-mode tellurite glass fiber,” Opt. Express14(24), 11766–11772 (2006). [CrossRef] [PubMed]
  24. V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Photonic bandgap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B71(4), 045107 (2005). [CrossRef]
  25. I. Enomori, K. Saitoh, and M. Koshiba, “Fundamental characteristics of localized acoustic modes in photonic crystal fibers,”IEICE Trans. Electron,” E88-C(2), 876–882 (2005).
  26. M. M. Sigalas, “Elastic wave band gaps and defect states in two-dimensional composites,” J. Acoust. Soc. Am.101(3), 1256–1261 (1997). [CrossRef]
  27. P. J. Thomas, N. L. Rowell, H. M. Vandriel, and G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B19(10), 4986–4998 (1979). [CrossRef]
  28. W. W. Zou, Z. Y. He, and K. Hotate, “Two-dimensional finite element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett.18(23), 2487–2489 (2006). [CrossRef]
  29. B. Ward and J. Spring, “Finite element analysis of Brillouin gain in SBS-suppressing optical fibers with non-uniform acoustic velocity profiles,” Opt. Express17(18), 15685–15699 (2009). [CrossRef] [PubMed]
  30. S. Dasgupta, F. Poletti, S. Liu, P. Petropoulos, D. J. Richardson, L. Grüner-Nielsen, and S. Herstrøm, “Modeling Brillouin Gain Spectrum of Solid and Microstructured Optical Fibers Using a Finite Element Method,” J. Lightwave Technol.29(1), 22–30 (2011). [CrossRef]
  31. G. S. Qin, H. Sotobayashi, M. Tsuchiya, A. Mori, T. Suzuki, and Y. Ohishi, “Stimulated Brillouin Scattering in a Single-Mode Tellurite Fiber for Amplification, Lasing, and Slow Light Generation,” J. Lightwave Technol.26(5), 492–498 (2008). [CrossRef]
  32. M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986). [CrossRef]
  33. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27(18), 1592–1594 (2002). [CrossRef] [PubMed]
  34. A. K. Abeeluck, N. M. Litchinitser, C. Headley, and B. J. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express10(23), 1320–1333 (2002). [CrossRef] [PubMed]
  35. T. P. White, R. C. McPhedran, C. Martijnde Sterke, N. M. Litchinitser, and B. J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett.27(22), 1977–1979 (2002). [CrossRef] [PubMed]
  36. M. S. Liao, C. Chaudhari, G. S. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express17(24), 21608–21614 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited