OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28855–28861

Direct fabrication of PDMS waveguides via low-cost DUV irradiation for optical sensing

Sebastian Valouch, Heinrich Sieber, Siegfried Kettlitz, Carsten Eschenbaum, Uwe Hollenbach, and Uli Lemmer  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28855-28861 (2012)
http://dx.doi.org/10.1364/OE.20.028855


View Full Text Article

Enhanced HTML    Acrobat PDF (2624 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the fabrication of single mode optical waveguides by irradiating polydimethylsiloxane (PDMS) with a low cost Hg lamp through a conventional quartz mask. By increasing the refractive index of the irradiated areas, waveguiding is achieved with an attenuation of 0.47 dB/cm at a wavelength of 635 nm. The refractive index change is stable in ambient air and water for time periods of more than 3 months. The excitation of water-dispersed fluorescent nanoparticles in the evanescent field of the waveguide is demonstrated.

© 2012 OSA

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Integrated Optics

History
Original Manuscript: September 26, 2012
Revised Manuscript: November 22, 2012
Manuscript Accepted: November 29, 2012
Published: December 12, 2012

Citation
Sebastian Valouch, Heinrich Sieber, Siegfried Kettlitz, Carsten Eschenbaum, Uwe Hollenbach, and Uli Lemmer, "Direct fabrication of PDMS waveguides via low-cost DUV irradiation for optical sensing," Opt. Express 20, 28855-28861 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28855


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1339–1365 (2002). [CrossRef]
  2. D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. Isaacson, “A Bio-Fluidic-Photonic Platform Based on Deep UV Modification of Polymers,” IEEE J. Sel. Top. Quantum Electron.13(2), 214–222 (2007). [CrossRef]
  3. Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci.28(1), 153–184 (1998). [CrossRef]
  4. J. C. McDonald and G. M. Whitesides, “Poly(dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res.35(7), 491–499 (2002). [CrossRef] [PubMed]
  5. V. Lien, Y. Berdichevsky, and Y.-H. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photonic. Tech. L.16(6), 1525–1527 (2004). [CrossRef]
  6. S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” AEU, Int. J. Electron. Commun.61(3), 163–167 (2007). [CrossRef]
  7. D. A. Chang-Yen, R. K. Eich, and B. K. Gale, “A Monolithic PDMS waveguide system fabricated using soft-lithography techniques,” J. Lightwave Technol.23(6), 2088–2093 (2005). [CrossRef]
  8. M. Okoshi, J. Li, and P. R. Herman, “157 nm F2-laser writing of silica optical waveguides in silicone rubber,” Opt. Lett.30(20), 2730–2732 (2005). [CrossRef] [PubMed]
  9. C. N. B. Udalagama, S. F. Chan, S. Homhuan, A. A. Bettiol, T. Wohland, and F. Watt, “Fabrication of integrated channel waveguides in polydimethylsiloxane (PDMS) using proton beam writing (PBW): applications for fluorescence detection in microfluidic channels,” in Proc. SPIE (SPIE, 2008), Vol. 6882, 68820D–8.
  10. F. Egitto and L. Matienzo, “Transformation of Poly(dimethylsiloxane) into thin surface films of SiOx by UV/Ozone treatment. Part I: Factors affecting modification,” J. Mater. Sci.41(19), 6362–6373 (2006). [CrossRef]
  11. M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV / ozone photochemical processes,” Chemical Vapor Deposition1591–1596 (2000).
  12. Y. Berdichevsky, J. Khandurina, A. Guttman, and Y.-H. Lo, “UV/ozone modification of poly(dimethylsiloxane) microfluidic channels,” Sens. Actuators B Chem.97(2-3), 402–408 (2004). [CrossRef]
  13. T. Scharnweber, R. Truckenmüller, A. M. Schneider, A. Welle, M. Reinhardt, and S. Giselbrecht, “Rapid prototyping of microstructures in polydimethylsiloxane (PDMS) by direct UV-lithography,” Lab Chip11(7), 1368–1371 (2011). [CrossRef] [PubMed]
  14. N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett.75(17), 2557–2559 (1999). [CrossRef]
  15. H.-N. Kim, S.-H. Lee, and K.-Y. Suh, “Controlled mechanical fracture for fabricating microchannels with various size gradients,” Lab Chip11(4), 717–722 (2011). [CrossRef] [PubMed]
  16. T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential Self-Assembly of Surface-Modified Si/SiOx Nanoparticles on UV/Ozone Micropatterned Poly(dimethylsiloxane) Films,” Adv. Mater. (Deerfield Beach Fla.)12(17), 1257–1261 (2000). [CrossRef]
  17. H. Oláh, H. Hillborg, and G. J. Vancso, “Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification,” Appl. Surf. Sci.239(3-4), 410–423 (2005). [CrossRef]
  18. F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys.151(2), 95–99 (2009). [CrossRef]
  19. R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators B Chem.61(1-3), 100–127 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited