OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28989–29001

Electro-optically tunable, multi-wavelength optical parametric generators in aperiodically poled lithium niobates

Y. H. Chen, H. P. Chung, W. K. Chang, H. T. Lyu, J. W. Chang, and C. H. Tseng  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28989-29001 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1079 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the design and demonstration of electro-optically tunable, multi-wavelength optical parametric generators (OPGs) based on aperiodically poled lithium niobate (APPLN) crystals. Two methods have been proposed to significantly enhance the electro-optic (EO) tunability of an APPLN OPG constructed by the aperiodic optical superlattice (AOS) technique. This is done by engineering the APPLN domain structure either in the crystal fabrication or in the crystal design process to increase the length or block-number difference of the two opposite-polarity domains used in the structure. Several orders of magnitude enhancement on the EO tuning rate of the APPLN OPGs constructed by the proposed techniques for simultaneous multiple signal wavelength generation over a conventional one has been demonstrated in a near infrared band (1500-1600 nm).

© 2012 OSA

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(230.2090) Optical devices : Electro-optical devices

ToC Category:
Nonlinear Optics

Original Manuscript: October 9, 2012
Revised Manuscript: December 6, 2012
Manuscript Accepted: December 6, 2012
Published: December 13, 2012

Y. H. Chen, H. P. Chung, W. K. Chang, H. T. Lyu, J. W. Chang, and C. H. Tseng, "Electro-optically tunable, multi-wavelength optical parametric generators in aperiodically poled lithium niobates," Opt. Express 20, 28989-29001 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Sasano and E. V. Browell, “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations,” Appl. Opt.28(9), 1670–1679 (1989). [CrossRef] [PubMed]
  2. M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B96(1), 201–213 (2009). [CrossRef]
  3. K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate,” Opt. Lett.25(23), 1714–1716 (2000). [CrossRef] [PubMed]
  4. J. Spigulis, L. Gailite, A. Lihachev, and R. Erts, “Simultaneous recording of skin blood pulsations at different vascular depths by multiwavelength photoplethysmography,” Appl. Opt.46(10), 1754–1759 (2007). [CrossRef] [PubMed]
  5. J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett.14(24), 973–976 (1965). [CrossRef]
  6. P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett.23(3), 159–161 (1998). [CrossRef] [PubMed]
  7. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett.21(8), 591–593 (1996). [CrossRef] [PubMed]
  8. M. D. Ewbank, M. J. Rosker, and G. L. Bennett, “Frequency tuning a mid-infrared optical parametric oscillator by the electro-optic effect,” J. Opt. Soc. Am. B14(3), 666–671 (1997). [CrossRef]
  9. C. L. Chang, Y. H. Chen, C. H. Lin, and J. Y. Chang, “Monolithically integrated multi-wavelength filter and second harmonic generator in aperiodically poled lithium niobate,” Opt. Express16(22), 18535–18544 (2008). [CrossRef] [PubMed]
  10. Y. H. Chen, W. K. Chang, N. Hsu, C. Y. Chen, and J. W. Chang, “Internal Q-switching and self-optical parametric oscillation in a two-dimensional periodically poled Nd:MgO:LiNbO3 laser,” Opt. Lett.37(14), 2814–2816 (2012). [CrossRef] [PubMed]
  11. Y. H. Chen, J. W. Chang, C. H. Lin, W. K. Chang, N. Hsu, Y. Y. Lai, Q. H. Tseng, R. Geiss, T. Pertsch, and S. S. Yang, “Spectral narrowing and manipulation in an optical parametric oscillator using periodically poled lithium niobate electro-optic polarization-mode converters,” Opt. Lett.36(12), 2345–2347 (2011). [CrossRef] [PubMed]
  12. Y. Q. Lu, J. J. Zheng, Y. L. Lu, N. B. Ming, and Z. Y. Xu, “Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by electro-optic effect,” Appl. Phys. Lett.74(1), 123–125 (1999). [CrossRef]
  13. N. O’Brien, M. Missey, P. Powers, V. Dominic, and K. L. Schepler, “Electro-optic spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator,” Opt. Lett.24(23), 1750–1752 (1999). [CrossRef] [PubMed]
  14. S. Helmfrid, K. Tatsuno, and K. Ito, “Theoretical study of a modulator for a waveguide second-harmonic generator,” J. Opt. Soc. Am. B10(3), 459–468 (1993). [CrossRef]
  15. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett.22(20), 1553–1555 (1997). [CrossRef] [PubMed]
  16. M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure,” Opt. Lett.28(7), 558–560 (2003). [CrossRef] [PubMed]
  17. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278(5339), 843–846 (1997). [CrossRef]
  18. J. Y. Lai, Y. J. Liu, H. Y. Wu, Y. H. Chen, and S. D. Yang, “Engineered multiwavelength conversion using nonperiodic optical superlattice optimized by genetic algorithm,” Opt. Express18(5), 5328–5337 (2010). [CrossRef] [PubMed]
  19. B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett.75(15), 2175–2177 (1999). [CrossRef]
  20. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science220(4598), 671–680 (1983). [CrossRef] [PubMed]
  21. R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron.15(6), 432–444 (1979). [CrossRef]
  22. Y. W. Lee, F. C. Fan, Y. C. Huang, B. Y. Gu, B. Z. Dong, and M. H. Chou, “Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate,” Opt. Lett.27(24), 2191–2193 (2002). [CrossRef] [PubMed]
  23. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched 1.064 -µm pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett.20(1), 52–54 (1995). [CrossRef] [PubMed]
  24. L. E. Myers, Quasi-Phasematched Optical Parametric Oscillators in Bulk Periodically Poled Lithium Niobate (Ph.D. Dissertation, Stanford University, 1995).
  25. M. Robles-Agudo and R. S. Cudney, “Multiple wavelength generation using aperiodically poled lithium niobate,” Appl. Phys. B103(1), 99–106 (2011). [CrossRef]
  26. C. H. Lin, Y. H. Chen, S. W. Lin, C. L. Chang, Y. C. Huang, and J. Y. Chang, “Electro-optic narrowband multi-wavelength filter in aperiodically poled lithium niobate,” Opt. Express15(15), 9859–9866 (2007). [CrossRef] [PubMed]
  27. Y. Y. Lin, Y. F. Chiang, Y. C. Huang, A. C. Chiang, S. T. Lin, and Y. H. Chen, “Light-enhanced electro-optic spectral tuning in annealed proton-exchanged periodically poled lithium niobate channel waveguides,” Opt. Lett.31(23), 3483–3485 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited